CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment

[1]  D. Sinton,et al.  High carbon utilization in CO2 reduction to multi-carbon products in acidic media , 2022, Nature Catalysis.

[2]  Yi Xie,et al.  Surface Engineering on Commercial Cu Foil for Steering C2H4/CH4 Ratio in CO2 Electroreduction. , 2022, Nano letters.

[3]  M. Koper,et al.  Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts , 2022, Chemical science.

[4]  Jeremy T. Feaster,et al.  Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers , 2022, Nature Energy.

[5]  Cheng Lian,et al.  Engineering the Local Microenvironment over Bi Nanosheets for Highly Selective Electrocatalytic Conversion of CO2 to HCOOH in Strong Acid , 2022, ACS Catalysis.

[6]  Dong Hyun Kim,et al.  On the importance of the electric double layer structure in aqueous electrocatalysis , 2022, Nature Communications.

[7]  Hongwen Huang,et al.  Dynamic Evolution of Active Sites in Electrocatalytic CO2 Reduction Reaction: Fundamental Understanding and Recent Progress , 2022, Advanced Functional Materials.

[8]  S. Haussener,et al.  Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium , 2021, Nature Catalysis.

[9]  M. Koper,et al.  The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO2 Reduction on Gold Electrodes , 2021, Journal of the American Chemical Society.

[10]  B. Deng,et al.  Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction , 2021, ACS Catalysis.

[11]  Pengfei Wei,et al.  A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products​ , 2021, Angewandte Chemie.

[12]  Pengfei Wei,et al.  A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products​. , 2021, Angewandte Chemie.

[13]  Chuan Xia,et al.  Nanoconfinement Engineering over Hollow Multi-Shell Structured Copper towards Efficient Electrocatalytical C-C coupling. , 2021, Angewandte Chemie.

[14]  M. Koper,et al.  Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media , 2021, ACS catalysis.

[15]  Zhiqun Lin,et al.  Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO2 Valorization , 2021, Advanced Energy Materials.

[16]  Junnan Li,et al.  Electrocatalytic carbon dioxide reduction in acid , 2021, Chem Catalysis.

[17]  P. Liu,et al.  Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework-based precatalysts. , 2021, Angewandte Chemie.

[18]  Jin Wang,et al.  Cu‐MOFs Derived Porous Cu Nanoribbons with Strengthened Electric Field for Selective CO2 Electroreduction to C2+ Fuels , 2021, Advanced Energy Materials.

[19]  Qinghong Zhang,et al.  Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. , 2021, Chemical Society reviews.

[20]  M. Koper,et al.  Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media , 2021, Nature Communications.

[21]  N. López,et al.  Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution , 2021, Nature Catalysis.

[22]  Zhanxi Fan,et al.  Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copper‐Based Catalysts toward Multicarbon Products , 2021, Advanced Functional Materials.

[23]  F. P. García de Arquer,et al.  CO2 electrolysis to multicarbon products in strong acid , 2021, Science.

[24]  Xueping Qin,et al.  Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO2 Electrochemical Reduction , 2021, Advanced materials.

[25]  M. Koper,et al.  The Interrelated Effect of Cations and Electrolyte pH on the Hydrogen Evolution Reaction on Gold Electrodes in Alkaline Media , 2021, Angewandte Chemie.

[26]  P. Yang,et al.  Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation , 2021 .

[27]  Z. Hou,et al.  Hidden Mechanism Under Roughness-enhanced Selectivity of Carbon Monoxide Electrocatalytic Reduction. , 2021, Angewandte Chemie.

[28]  Yang Hou,et al.  Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts , 2021, Nano Research.

[29]  M. Koper,et al.  Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction , 2020, Journal of the American Chemical Society.

[30]  E. Reisner,et al.  Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction , 2020, Nature Catalysis.

[31]  W. Goddard,et al.  Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 , 2020, Nature Catalysis.

[32]  E. Grant,et al.  pH Matters When Reducing CO2 in an Electrochemical Flow Cell , 2020 .

[33]  Y. Hwang,et al.  Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. , 2020, Chemical Society reviews.

[34]  Qinghong Zhang,et al.  Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper , 2020, Nature Catalysis.

[35]  J. Vávra,et al.  Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. , 2020, Angewandte Chemie.

[36]  Shuhong Yu,et al.  Protecting Copper Oxidation State via Intermediate Confinement for Selective CO2 Electroreduction to C2+ Fuels. , 2020, Journal of the American Chemical Society.

[37]  Haotian Wang,et al.  Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products , 2020, Science Advances.

[38]  Jyhfu Lee,et al.  Controlling the Oxidation State of Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene. , 2020, Journal of the American Chemical Society.

[39]  M. Fontecave,et al.  Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts , 2020 .

[40]  Christine M. Gabardo,et al.  Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly , 2019, Joule.

[41]  J. Nørskov,et al.  Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. , 2019, Chemical reviews.

[42]  Christine M. Gabardo,et al.  Electrochemical CO2 Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design , 2019, Advanced materials.

[43]  V. Valev,et al.  “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization , 2019, Journal of Materials Chemistry A.

[44]  Xiaobing Hu,et al.  Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate , 2019, Nature Catalysis.

[45]  Y. Surendranath,et al.  Electrolyte Competition Controls Surface Binding of CO Intermediates to CO2 Reduction Catalysts , 2019, The Journal of Physical Chemistry C.

[46]  Nan Zhang,et al.  Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water , 2019, Nature Catalysis.

[47]  Dunfeng Gao,et al.  Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products , 2019, Nature Catalysis.

[48]  M. Shao,et al.  CO2 Electrochemical Reduction As Probed through Infrared Spectroscopy , 2019, ACS Energy Letters.

[49]  Feng Jiao,et al.  High-rate electroreduction of carbon monoxide to multi-carbon products , 2018, Nature Catalysis.

[50]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[51]  K. Livi,et al.  Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires , 2017 .

[52]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[53]  Paul J. A. Kenis,et al.  One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer , 2016 .

[54]  Yushan Yan,et al.  Correcting the Hydrogen Diffusion Limitation in Rotating Disk Electrode Measurements of Hydrogen Evolution Reaction Kinetics , 2015 .

[55]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[56]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[57]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[60]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[61]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[62]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .