Control of Manipulators Subject to Unknown Friction

The paper deals with a regulation control problem for a n-dof manipulator, subject to significant friction torques acting on the joints. While the values of the robot inertial parameters are assumed to be available, the friction parameters are supposed to be unknown: the compensation of the friction effects is then achieved by the proposed control approach on the basis of the estimate provided by a reduced-order observer. The effectiveness of the proposed approach is confirmed by the simulation results, obtained for a two-dof planar manipulator

[1]  Henk Nijmeijer,et al.  Observer-based compensation of discontinuous friction , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[2]  Antonio Tornambè,et al.  Impact Control of a Single-link Robot Striking Different Environments: Theoretical and Experimental Investigation , 2000, Eur. J. Control.

[3]  Maarten Steinbuch,et al.  Modeling and identification for high-performance robot control: an RRR-robotic arm case study , 2004, IEEE Transactions on Control Systems Technology.

[4]  Kyo-Il Lee,et al.  Robust nonlinear task space control for 6 DOF parallel manipulator , 2005, Autom..

[5]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[6]  M. Indri,et al.  Rapid Prototyping of a Model-Based Control With Friction Compensation for a Direct-Drive Robot , 2006, IEEE/ASME Transactions on Mechatronics.

[7]  Jan Swevers,et al.  Nonlocal hysteresis function identification and compensation with neural networks , 2005, IEEE Transactions on Instrumentation and Measurement.

[8]  Brian Armstrong,et al.  New results in NPID control: tracking, integral control, friction compensation and experimental results , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  W. Dixon,et al.  Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction , 2005, Proceedings of the 2005, American Control Conference, 2005..

[10]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[11]  Y. Cho,et al.  Robust nonlinear task space control for a 6 DOF parallel manipulator , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[12]  J. Moreno,et al.  Manipulator velocity control using friction compensation , 2003 .

[13]  Antonio Tornambè,et al.  Global regulation of a planar robot arm striking a surface , 1996, IEEE Trans. Autom. Control..

[14]  Pierre Apkarian,et al.  Adaptive controls for nonlinearly parameterized uncertainties in robot manipulators , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[15]  Darren M. Dawson,et al.  Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects , 1999, IEEE Trans. Control. Syst. Technol..

[16]  M. Indri,et al.  Nonlinear friction estimation for digital control of direct-drive manipulators , 2003, 2003 European Control Conference (ECC).

[17]  Darren M. Dawson,et al.  Adaptive control techniques for friction compensation , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[18]  M. Indri,et al.  Friction Compensation in Robotics: an Overview , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[19]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[20]  Antonio Tornambè,et al.  Impact model and control of two multi-DOF cooperating manipulators , 1999, IEEE Trans. Autom. Control..

[21]  Darren M. Dawson,et al.  Adaptive control techniques forfrictioncompensation , 1999 .

[22]  Carlos Canudas de Wit,et al.  Adaptive friction compensation with partially known dynamic friction model , 1997 .