The Maximum Number of Squares in a Tree

We show that the maximum number of different square substrings in unrooted labelled trees behaves much differently than in words. A substring in a tree corresponds (as its value) to a simple path. Let $\textsf{sq}(n)$ be the maximum number of different square substrings in a tree of size n. We show that asymptotically $\textsf{sq}(n)$ is strictly between linear and quadratic orders, for some constants c1,c2>0 we obtain: $$c_1n^{4/3} \le \textsf{sq}(n) \le c_2n^{4/3}.$$

[1]  Noga Alon,et al.  Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.

[2]  Xuding Zhu,et al.  Nonrepetitive list colourings of paths , 2011, Random Struct. Algorithms.

[3]  M. Crochemore,et al.  Algorithms on Strings: Tools , 2007 .

[4]  Sandi Klavzar,et al.  Nonrepetitive colorings of trees , 2007, Discret. Math..

[5]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[6]  Wojciech Rytter,et al.  Jewels of stringology , 2002 .

[7]  Noga Alon,et al.  Breaking the rhythm on graphs , 2008, Discret. Math..

[8]  Aviezri S. Fraenkel,et al.  How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.

[9]  Lucian Ilie,et al.  A note on the number of squares in a word , 2007, Theor. Comput. Sci..

[10]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[11]  Lucian Ilie,et al.  A simple proof that a word of length n has at most 2n distinct squares , 2005, J. Comb. Theory A.

[12]  Francine Blanchet-Sadri,et al.  Counting Distinct Squares in Partial Words , 2009, Acta Cybern..