Flexible scheme for the implementation of nonadiabatic geometric quantum computation

[1]  S Guérin,et al.  Robust quantum control by a single-shot shaped pulse. , 2013, Physical review letters.

[2]  Mingzhen Tian,et al.  Robustness of single-qubit geometric gate against systematic error , 2011 .

[3]  D. Tong,et al.  Nonadiabatic holonomic multiqubit controlled gates , 2019, Physical Review A.

[4]  Vahid Azimi Mousolou,et al.  Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets , 2012, 1209.3645.

[5]  P Geltenbort,et al.  Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle. , 2008, Physical review letters.

[6]  D. M. Tong,et al.  Non-adiabatic Holonomic Gates realized by a single-shot implementation , 2015, 1511.00919.

[7]  G. Castagnoli,et al.  Geometric quantum computation with NMR , 1999, quant-ph/9910052.

[8]  Bi-Hua Huang,et al.  Reverse engineering of a Hamiltonian for a three-level system via the Rodrigues’ rotation formula , 2017 .

[9]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[10]  E. Sjoqvist,et al.  Single-loop multiple-pulse nonadiabatic holonomic quantum gates , 2016, 1608.07418.

[11]  Yue Ban,et al.  Fast and robust control of two interacting spins , 2018, Physical Review A.

[12]  D. M. Tong,et al.  Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces , 2017, 1706.02967.

[13]  D. M. Tong,et al.  Fast non-Abelian geometric gates via transitionless quantum driving , 2014, Scientific Reports.

[14]  Yan Xia,et al.  Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems , 2014, 1401.4291.

[15]  J. G. Muga,et al.  Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.

[16]  Mikio Nakahara,et al.  Dynamical invariants for quantum control of four-level systems , 2012, 1205.3034.

[17]  E. Torrontegui,et al.  Hamiltonian engineering via invariants and dynamical algebra , 2014, 1402.5695.

[18]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[19]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[20]  Yan Xia,et al.  Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states , 2014, 1410.8285.

[21]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[22]  Nikolay V. Vitanov,et al.  Synthesis of arbitrary unitary transformations of collective states of trapped ions by quantum Householder reflections , 2008 .

[23]  N. Vitanov,et al.  Coherent pulsed excitation of degenerate multistate systems: Exact analytic solutions , 2006, 0802.4254.

[24]  Jie Song,et al.  Deterministic conversions between Greenberger-Horne-Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering , 2019, Physical Review A.

[25]  A. Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[26]  Tao Chen,et al.  Single-Loop and Composite-Loop Realization of Nonadiabatic Holonomic Quantum Gates in a Decoherence-Free Subspace , 2019, Physical Review Applied.

[27]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[28]  Franco Nori,et al.  Quantum state tomography of large nuclear spins in a semiconductor quantum well: Optimal robustness against errors as quantified by condition numbers , 2014, 1410.2440.

[29]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[30]  D. Tong,et al.  Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases , 2016, 1612.08466.

[31]  Jeeva Anandan,et al.  Non-adiabatic non-abelian geometric phase , 1988 .

[32]  J. G. Muga,et al.  Hamiltonian design to prepare arbitrary states of four-level systems , 2017, 1710.10207.

[33]  H. J. Korsch,et al.  Dynamical Noether invariants for time-dependent nonlinear systems , 1981 .

[34]  Z. D. Wang,et al.  Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .

[35]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[36]  N. Vitanov Synthesis of arbitrary SU(3) transformations of atomic qutrits , 2012 .

[37]  Franco Nori,et al.  Phase gate of one qubit simultaneously controlling n qubits in a cavity or coupled to a resonator , 2009, 0912.4242.

[38]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[39]  Nikolay V. Vitanov,et al.  Arbitrary qudit gates by adiabatic passage , 2013 .

[40]  Exploiting quantum parallelism to simulate quantum random many-body systems. , 2005, Physical review letters.

[41]  Z. D. Wang,et al.  Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions , 2006 .

[42]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[43]  Thomas Halfmann,et al.  Arbitrarily Accurate Pulse Sequences for Robust Dynamical Decoupling. , 2016, Physical review letters.

[44]  Bao-Jie Liu,et al.  Superadiabatic Holonomic Quantum Computation in Cavity QED , 2016, 1610.03661.

[45]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[46]  Sophia E. Economou,et al.  Fast high-fidelity entangling gates for spin qubits in Si double quantum dots , 2019, Physical Review B.

[47]  Jiang Zhang,et al.  Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries , 2018, Physical Review A.

[48]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[49]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[50]  Li-Xiang Cen,et al.  Scalable quantum computation in decoherence-free subspaces with trapped ions , 2006, quant-ph/0603222.

[51]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[52]  Hui Yan,et al.  Geometric Quantum Computation with Shortcuts to Adiabaticity , 2019, Advanced Quantum Technologies.

[53]  J. G. Muga,et al.  Engineering of fast population transfer in three-level systems , 2012 .

[54]  Hui Yan,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions , 2014 .

[55]  J. G. Muga,et al.  Qubit gates with simultaneous transport in double quantum dots , 2018, New Journal of Physics.

[56]  Jens Siewert,et al.  Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. , 2003, Physical review letters.

[57]  D. M. Tong,et al.  Composite nonadiabatic holonomic quantum computation , 2017, 1706.01053.

[58]  Fuguo Deng,et al.  Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities , 2015, 1511.00087.

[59]  Fausto Rossi,et al.  Semiconductor-based geometrical quantum gates , 2002, quant-ph/0207019.

[60]  Dianne P. O'Leary,et al.  Parallelism for quantum computation with qudits , 2006, quant-ph/0603081.

[61]  D. Tong,et al.  Nonadiabatic holonomic quantum computation with Rydberg superatoms , 2018, Physical Review A.

[62]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  Y. Li Quantum computation with noisy operations , 2015, 1506.03552.

[64]  Shi-Liang Zhu,et al.  Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems , 2002, quant-ph/0210027.

[65]  Tao Chen,et al.  Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit. , 2018, Physical review letters.

[66]  Xue-ke Song,et al.  Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm , 2015, 1509.00097.

[67]  E. Torrontegui,et al.  Lewis-Riesenfeld invariants and transitionless quantum driving , 2011, 1102.3449.

[68]  Daniel A Lidar,et al.  Fault-tolerant holonomic quantum computation. , 2009, Physical review letters.

[69]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[70]  Xin Wang,et al.  Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates. , 2018, Physical review letters.

[71]  Quantum parallelism of the controlled-not operation : An experimental criterion for the evaluation of device performance , 2004, quant-ph/0407165.

[72]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[73]  Z. D. Wang,et al.  Implementing universal nonadiabatic holonomic quantum gates with transmons , 2017, 1710.03141.

[74]  J. G. Muga,et al.  Shortcuts to adiabaticity in three-level systems using Lie transforms , 2014, 1403.2593.

[75]  Z. Xue,et al.  Nonadiabatic holonomic quantum computation with all-resonant control , 2016, 1601.07219.

[76]  Wojciech H Zurek,et al.  Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. , 2012, Physical review letters.

[77]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[78]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[79]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[80]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[81]  Shi-Liang Zhu,et al.  Unconventional geometric quantum computation. , 2003, Physical Review Letters.

[82]  Yan Xia,et al.  Nonadiabatic holonomic quantum computation using Rydberg blockade , 2018 .

[83]  Jie Song,et al.  Pulse design for multilevel systems by utilizing Lie transforms , 2018 .

[84]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.