Interval Arithmetic in Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition requires many very time consuming operations, including resultant computation, polynomial factorization, algebraic polynomial gcd computation and polynomial real root isolation. We show how the time for algebraic polynomial real root isolation can be greatly reduced by using interval arithmetic instead of exact computation. This substantially reduces the overall time for cylindrical algebraic decomposition.

[1]  Jeremy R. Johnson,et al.  Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.

[2]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[3]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[4]  George E. Collins,et al.  Multiprecision floating point addition , 2000, ISSAC.

[5]  Mark J. Encarnación Computing GCDs of Polynomials over Algebraic Number Fields , 1995, J. Symb. Comput..

[6]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[7]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[8]  Scott McCallum,et al.  On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.

[9]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[10]  Christopher W. Brown Guaranteed solution formula construction , 1999, ISSAC '99.

[11]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[12]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[13]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[14]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .