Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA

We report on the cosmological parameters derived from observations with the Cosmic Background Imager (CBI), covering 40 deg2 and the multipole range 300 ≲ l ≲ 3500. The angular scales probed by the CBI correspond to structures that cover the mass range from 1014 to 1017 M☉, and the observations reveal, for the first time, the seeds that gave rise to clusters of galaxies. These unique, high-resolution observations also show damping in the power spectrum to l ~ 2000, which we interpret as being due to the finite width of the photon-baryon decoupling region and the viscosity operating at decoupling. Because the observations extend to much higher l, the CBI results provide information complementary to that probed by the BOOMERANG, DASI, MAXIMA, and VSA experiments. When the CBI observations are used in combination with those from COBE-DMR, we find evidence for a flat universe, Ωtot = 1.00 (1 σ), a power-law index of primordial fluctuations, ns = 1.08, and densities in cold dark matter, Ωcdmh2 = 0.16, and baryons, Ωbh2 = 0.023. With the addition of large-scale structure priors the Ωcdmh2 value is sharpened to 0.10, and we find ΩΛ = 0.67. In the l < 1000 overlap region with the BOOMERANG, DASI, MAXIMA, and VSA experiments, the agreement between these four experiments is excellent, and we construct optimal power spectra in the CBI bands that demonstrate this agreement. We derive cosmological parameters for the combined cosmic microwave background (CMB) experiments and show that these parameter determinations are stable as we progress from the weak priors using only CMB observations and very broad restrictions on cosmic parameters, through the addition of information from large-scale structure surveys, Hubble parameter determinations, and Type Ia supernova results. The combination of these with CMB observations gives a vacuum energy estimate of ΩΛ = 0.70, a Hubble parameter of h = 0.69 ± 0.04, and a cosmological age of 13.7 ± 0.2 Gyr. As the observations are pushed to higher multipoles, no anomalies relative to standard models appear, and extremely good consistency is found between the cosmological parameters derived for the CBI observations over the range 610 < l < 2000 and observations at lower l.

[1]  S. Mahulikar,et al.  Physica Scripta , 2004 .

[2]  J. Bond,et al.  A Fast Gridded Method for the Estimation of the Power Spectrum of the Cosmic Microwave Background from Interferometer Data with Application to the Cosmic Background Imager , 2002, astro-ph/0205385.

[3]  Elizabeth Waldram,et al.  First results from the Very Small Array — III. The cosmic microwave background power spectrum , 2002, astro-ph/0205380.

[4]  J. M. Kovac,et al.  Measurement of polarization with the Degree Angular Scale Interferometer , 2002, Nature.

[5]  H. Hoekstra,et al.  Constraints on Ωm and σ8 from Weak Lensing in Red-Sequence Cluster Survey Fields , 2002 .

[6]  J. Bond,et al.  The Cosmic Microwave Background & Inflation, Then & Now , 2002, astro-ph/0210007.

[7]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[8]  J. Bond,et al.  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[9]  H. Hoekstra,et al.  Constraints on Ωm and σ8 from Weak Lensing in Red-Sequence Cluster Survey Fields , 2002, astro-ph/0204295.

[10]  C. Skordis,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 16/07/00 RAPID CALCULATION OF THEORETICAL CMB ANGULAR POWER SPECTRA , 2002 .

[11]  J. Carlstrom,et al.  Cosmological Parameter Extraction from the First Season of Observations with the Degree Angular Scale Interferometer , 2002 .

[12]  Y. Mellier,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Likelihood Analysis of Cosmic Shear on Simulated and VIRMOS-DESCART Data ⋆ , 2002 .

[13]  A. Melchiorri,et al.  Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.

[14]  Caltech,et al.  PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 568, 38 Preprint typeset using L ATEX style emulateapj v. 14/09/00 DASI FIRST RESULTS: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND ANGULAR , 2002 .

[15]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[16]  J. Carlstrom,et al.  Cosmological Parameter Extraction from the First Season of Observations with DASI , 2001, astro-ph/0104490.

[17]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[18]  S. Weinberg Fluctuations in the cosmic microwave background. I. Form factors and their calculation in the synchronous gauge , 2001, astro-ph/0103279.

[19]  S. Weinberg Fluctuations in the cosmic microwave background. II. Cl at large and small l , 2001, astro-ph/0103281.

[20]  R. Ellis,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[21]  A. Melchiorri,et al.  The cosmic background radiation circa ν2K , 2000, astro-ph/0011381.

[22]  Adrian T. Lee,et al.  Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. , 2000, Physical review letters.

[23]  V. V. Hristov,et al.  Cosmological parameters from the first results of Boomerang , 2001 .

[24]  E. Szalay The Gothic as Maternal Legacy in Margaret Atwood's Lady Oracle , 2001 .

[25]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[26]  N. Suzuki,et al.  Review of Big Bang Nucleosynthesis and Primordial Abundances , 2000, astro-ph/0001318.

[27]  Adrian T. Lee,et al.  Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American Test Flight of Boomerang , 1999, The Astrophysical journal.

[28]  K. Olive,et al.  Primordial nucleosynthesis: Theory and observations , 1999, astro-ph/9905320.

[29]  A. Jaffe,et al.  Radical Compression of Cosmic Microwave Background Data , 1998, astro-ph/9808264.

[30]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[31]  D. Sasselov,et al.  A New Calculation of the Recombination Epoch , 1999, astro-ph/9909275.

[32]  L. Knox Cosmic microwave background anisotropy window functions revisited , 1999, astro-ph/9902046.

[33]  S. Burles,et al.  SHARPENING THE PREDICTIONS OF BIG-BANG NUCLEOSYNTHESIS , 1999, astro-ph/9901157.

[34]  J. Bond,et al.  Constraining large–scale structure theories with the cosmic background radiation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Power Spectra of the Cosmic Microwave Background and Density Fluctuations Seeded by Local Cosmic Strings , 1999 .

[36]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[37]  J. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998, astro-ph/9807103.

[38]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[39]  U. Seljak,et al.  Scalar, vector, and tensor contributions to CMB anisotropies from cosmic defects , 1997, astro-ph/9706250.

[40]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[41]  B. Allen,et al.  CMB Anisotropy Induced by Cosmic Strings on Angular Scales $>~ 15'$ , 1997, astro-ph/9704160.

[42]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[43]  J. Bond,et al.  The Peak-Patch Picture of Cosmic Catalogs. I. Algorithms , 1996 .

[44]  M. White,et al.  Acoustic Signatures in the Cosmic Microwave Background , 1996, astro-ph/9602019.

[45]  D. Spergel,et al.  Weighing the universe with the cosmic microwave background. , 1995, Physical review letters.

[46]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[47]  White,et al.  Effect of physical assumptions on the calculation of microwave background anisotropies. , 1995, Physical review. D, Particles and fields.

[48]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[49]  Sugiyama,et al.  Toward understanding CMB anisotropies and their implications. , 1994, Physical review. D, Particles and fields.

[50]  A. Starobinsky,et al.  Mixed Cold-Hot Dark Matter Model with Falling and Quasi-Flat Initial Perturbation Spectra , 1994, astro-ph/9409074.

[51]  U. Seljak A two-fluid approximation for calculating the cosmic microwave background anisotropies , 1994, astro-ph/9406050.

[52]  P. Steinhardt,et al.  Polarization of the microwave background due to primordial gravitational waves , 1993, astro-ph/9306027.

[53]  K. Gorski,et al.  Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE , 1993 .

[54]  Dodelson,et al.  Microwave anisotropies in the light of the data from the COBE satellite. , 1993, Physical review letters.

[55]  J. Bond,et al.  Imprint of gravitational waves on the cosmic microwave background. , 1993, Physical review letters.

[56]  Thanu Padmanabhan,et al.  Structure formation in the universe , 1993 .

[57]  J. Silk,et al.  Anisotropies of the cosmic microwave background in nonstandard cold dark matter models , 1992 .

[58]  F. Atrio-Barandela,et al.  Fluctuations of the microwave background radiation on large and intermediate angular scales , 1991 .

[59]  M. Fukugita,et al.  Constraints on cold dark matter-dominated universes from cosmic background radiation anisotropies , 1990 .

[60]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[61]  J. Bond,et al.  Isocurvature cold dark matter fluctuations , 1986 .

[62]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[63]  J. Silk,et al.  Fine-scale anisotropy of the cosmic microwave background in a universe dominated by cold dark matter , 1984 .

[64]  M. Wilson On the anisotropy of the cosmological background matter and radiation distribution. II - The radiation anisotropy in models with negative spatial curvature , 1983 .

[65]  Nick Kaiser,et al.  Small-angle anisotropy of the microwave background radiation in the adiabatic theory , 1983 .

[66]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[67]  Joseph Silk,et al.  On the anisotropy of the cosmological background matter and radiation distribution. I - The radiation anisotropy in a spatially flat universe , 1981 .

[68]  W. Press,et al.  Propagation of adiabatic cosmological perturbations through the ERA of matter-radiation decoupling , 1980 .

[69]  Steven Weinberg,et al.  Entropy generation and the survival of protogalaxies in an expanding universe , 1971 .

[70]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[71]  Y. Zel’dovich,et al.  Recombination of hydrogen in the hot model of the universe , 1968 .

[72]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[73]  P. Peebles RECOMBINATION OF THE PRIMEVAL PLASMA. , 1968 .