Decompositions of Edge-Colored Complete Graphs

We prove an asymptotic existence theorem for decompositions of edge-colored complete graphs into prespecified edge-colored subgraphs. Many combinatorial design problems fall within this framework. Applications of our main theorem require calculations involving the numbers of edges of each color and degrees of each color class of edges for the graphs allowed in the decomposition. We do these calculations to provide new proofs of the asymptotic existence of resolvable designs, near resolvable designs, group divisible designs, and grid designs. Two further applications are the asymptotic existence of skew Room d-cubes and the asymptotic existence of (v, k, 1)-BIBDs with any group of order k?1 as an automorphism group.

[1]  I. Anderson Combinatorial Designs: Construction Methods , 1990 .

[2]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[3]  Steven Furino,et al.  Existence results for near resolvable designs , 1995 .

[4]  Douglas R. Stinson The spectrum of nested Steiner triple systems , 1985, Graphs Comb..

[5]  R. A. Cuninghame-Green,et al.  Packing and Covering in Combinatorics , 1980 .

[6]  Robert K. Brayton,et al.  Self-orthogonal latin squares of all orders $n \ne 2,3,6$ , 1974 .

[7]  Charles J. Colbourn,et al.  Edge-coloured designs with block size four , 1988 .

[8]  Juraj Bosák,et al.  Decompositions of Graphs , 1990 .

[9]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[10]  Andries E. Brouwer Mutually orthogonal latin squares , 1978 .

[11]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[12]  L. Zhu,et al.  On the existence of triplewhist tournaments TWh(v) , 1997 .

[13]  Jack E. Graver,et al.  The Module Structure of Integral Designs , 1973, J. Comb. Theory, Ser. A.

[14]  J. Petersen Die Theorie der regulären graphs , 1891 .

[15]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[16]  D. K. Ray-Chaudhuri,et al.  Solution of Kirkman''s schoolgirl problem , 1971 .

[17]  S. Lang Number Theory III , 1991 .

[18]  Douglas R. Stinson,et al.  The spectrum of skew Room squares , 1981, Journal of the Australian Mathematical Society.

[19]  Jeffrey H. Dinitz Lower bounds for the number of pairwise orthogonal symmetric Latin squares , 1980 .

[20]  E. H. Moore,et al.  Tactical Memoranda I-III , 1896 .

[21]  Andrew Granville,et al.  On complementary decompositions of the complete graph , 1989, Graphs Comb..

[22]  Yair Caro,et al.  On colored designs - II , 1995, Discret. Math..

[23]  Kuang-I Chang,et al.  An existence theory for group divisible designs , 1976 .

[24]  Luc Teirlinck The existence of reverse Steiner triple systems , 1973, Discret. Math..

[25]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[26]  Douglas R. Stinson,et al.  Steiner pentagon systems , 1984, Discret. Math..

[27]  Alexander Rosa,et al.  On reverse Steiner triple systems , 1972, Discret. Math..

[28]  Richard M. Wilson,et al.  Constructions and Uses of Pairwise Balanced Designs , 1975 .