Microwave spectrum of nitrogen dioxide in excited vibrational states—Equilibrium structure

Abstract Microwave spectra were observed for 14 NO 2 in the vibrationally excited ν 1 , ν 2 , ν 3 , and 2 ν 2 states, as well as for 15 NO 2 in the ν 1 and ν 2 states. The rotational constants, spin-rotation coupling constants and hyperfine interaction constants were precisely determined. Second-order change of the spin-rotation coupling constants with respect to the bending vibrational quantum number v 2 was also determined. Combined use of the rotational constants obtained by the present microwave investigation and those reported in high-resolution infrared spectroscopic studies leads to the determination of all the vibration-rotation interaction constants α s and γ ss ′ and the equilibrium structure of nitrogen dioxide, r e ( N O) = 1.19389 ± 0.00004 A and θ e (ONO) = 133°51.4′ ± 0.2′, in the second-order approximation with respect to the vibrational quantum numbers.

[1]  J. Maillard,et al.  Analysis of the ?1 + ?3 band of 14N16O2 , 1978 .

[2]  A. Trotman‐Dickenson,et al.  ‘Comprehensive’ Inorganic Chemistry , 1958, Nature.

[3]  Microwave spectra of the HSO and DSO radicals , 1981 .

[4]  P. W. Wilson,et al.  Microwave spectrum of GeF2 , 1971 .

[5]  W. J. Lafferty,et al.  High-resolution infrared spectrum of the ?2 + ?3 band of 14N16O2 , 1975 .

[6]  V. Malathy Devi,et al.  Diode laser spectra of the ν2 band of 14N16O2: The (010) state of NO2 , 1980 .

[7]  Jean-Marie Flaud,et al.  Improved line parameters for the ν3 and ν2 + ν3 − ν2 bands of 14N16O2 , 1982 .

[8]  M. Laurin,et al.  High resolution infrared spectrum of the ν1 band of 14N16O2 , 1978 .

[9]  Takehiko Tanaka,et al.  Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states , 1970 .

[10]  E. Hirota,et al.  Microwave spectrum of silicon difluoride in the excited vibrational states, equilibrium structure, anharmonic potential function, and ν1-ν3 Coriolis resonance , 1973 .

[11]  R. Lees,et al.  Millimeter‐Wavelength Microwave Spectrum of Nitrogen Dioxide , 1966 .

[12]  S. Saito,et al.  Microwave spectrum, spin–rotation, and hyperfine interaction constants, dipole moment, molecular structure, and harmonic force constants of the FSO radical , 1981 .

[13]  R. Curl,et al.  Microwave spectrum of NO2 in the v2 = 1 state , 1976 .

[14]  H. Keller Gmelins Handbuch der anorganischen Chemie 8. : Auflage 1957. Verlag Chemie, GMBH, Weinheim. Systemnummér 28: Calcium, Teil A, Lieferung 2,420 Seiten, Kart. DM 232.-. Systemnummér 68: Platin, Teil D, Gesamtheferung, 638 Seiten, Kart. DM 370.-. , 1958 .

[15]  H. H. Nielsen The Vibration-Rotation Energies of Molecules , 1951 .

[16]  Robert F. Curl,et al.  Microwave Spectrum of NO2: Fine Structure and Magnetic Coupling , 1964 .

[17]  J. Brown,et al.  A determination of zeeman parameters for NO2 in its ground state , 1977 .

[18]  J. Watson Determination of Centrifugal Distortion Coefficients of Asymmetric‐Top Molecules , 1967 .

[19]  E. Hirota,et al.  Equilibrium structure and potential function of selenium dioxide by microwave spectroscopy , 1970 .

[20]  W. J. Lafferty,et al.  High resolution infra-red spectrum of the 2v 3 band of NO2 , 1974 .

[21]  Frank C. De Lucia,et al.  The millimeter and submillimeter spectrum of NO2: A study of electronic effects in a nonsinglet light asymmetric rotor , 1982 .

[22]  A. R. Hoy High order Coriolis interactions in NO2 , 1981 .

[23]  W. C. Ermler,et al.  Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces , 1976 .

[24]  S. Saito,et al.  Microwave spectrum of oxygen difluoride in vibrationally excited states; ν1 - 2ν2 Fermi resonance and equilibrium structure , 1966 .

[25]  S. Saito,et al.  Equilibrium structure and potential function of sulfur dioxide from the microwave spectrum in the excited vibrational state , 1964 .

[26]  John M. Brown,et al.  Infrared-microwave double-resonance spectroscopy of the ClO2 radical: A textbook example , 1981 .

[27]  E. B. Wilson,et al.  Approximate Treatment of the Effect of Centrifugal Distortion on the Rotational Energy Levels of Asymmetric‐Rotor Molecules , 1952 .

[28]  R. Curl,et al.  A determination of the spin–rotation parameters for NO2 in the X̃ 2A1 state by microwave–optical double resonance , 1981 .

[29]  W. J. Lafferty,et al.  Analysis of the ν3 band of 14N16O2 , 1974 .

[30]  S. Hurlock,et al.  High resolution spectrum and analysis of the ν2 band of 14N16O2 , 1973 .

[31]  W. J. Lafferty,et al.  High-resolution infrared spectrum of the ?3 and ?2 + ?3 - ?2 bands of 14N16O2 , 1976 .

[32]  S. Saito Microwave spectrum of sulfur dioxide in doubly excited vibrational states and determination of the γ constants , 1969 .

[33]  M. Allegrini,et al.  Spin–rotation and hyperfine parameters for the (001) excited vibrational state of NO2 from infrared–radiofrequency double resonance , 1980 .

[34]  D. O. Harris,et al.  Microwave spectrum of 14N 16O2 at 70 GHz , 1974 .

[35]  J. Plíva,et al.  Correlations and accuracy of estimation of spectroscopic constants and term values , 1974 .

[36]  W. J. Lafferty,et al.  The high resolution infrared spectrum of the 2ν2 + ν3 and ν1 + ν2 + ν3 bands of 14N16O2 , 1977 .

[37]  John M. Brown,et al.  A reduced form of the spin-rotation Hamiltonian for asymmetric-top molecules, with applications to HO2 and NH2 , 1979 .

[38]  W. J. Lafferty,et al.  High Resolution Infrared Spectra of the ν2 and 2ν1 Bands of 14N16O2 , 1975 .

[39]  R. Mariella,et al.  Microwave Spectrum of Chlorine Dioxide. VI. υ2 = 1 State , 1970 .