Tetrazine-based cycloadditions: application to pretargeted live cell imaging.

Bioorthogonal tetrazine cycloadditions have been applied to live cell labeling. Tetrazines react irreversibly with the strained dienophile norbornene forming dihydropyrazine products and dinitrogen. The reaction is high yielding, selective, and fast in aqueous media. Her2/neu receptors on live human breast cancer cells were targeted with a monoclonal antibody modified with a norbornene. Tetrazines conjugated to a near-infrared fluorochrome selectively and rapidly label the pretargeted antibody in the presence of serum. These findings indicate that this chemistry is suitable for in vitro labeling experiments, and suggests that it may prove a useful strategy for in vivo pretargeted imaging under numerous modalities.

[1]  Carolyn R. Bertozzi,et al.  Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry , 2008, Journal of the American Chemical Society.

[2]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[3]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[4]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[5]  J. Chatal,et al.  Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  Anna M Wu,et al.  Arming antibodies: prospects and challenges for immunoconjugates , 2005, Nature Biotechnology.

[7]  P. Carter,et al.  Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies , 1993, Cancer Immunology, Immunotherapy.

[8]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[9]  G. Graziano Rate enhancement of Diels–Alder reactions in aqueous solutions , 2004 .

[10]  A James Link,et al.  Non-canonical amino acids in protein engineering. , 2003, Current opinion in biotechnology.

[11]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[12]  J. Soloducho,et al.  Practical synthesis of bis-substituted tetrazines with two pendant 2-pyrrolyl or 2-thienyl groups, precursors of new conjugated polymers , 2003 .

[13]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[14]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[15]  E. Diamandis,et al.  The biotin-(strept)avidin system: principles and applications in biotechnology. , 1991, Clinical chemistry.

[16]  J. Sauer,et al.  Reaktivität einfacher offenkettiger und cyclischer dienophile bei Diels-Alder-reaktionen mit inversem elektronenbedarf , 1990 .

[17]  Jaromír Balcar Reaktivitt von stickstoff-heterocyclen genenber cyclooctin als dienophil , 1983 .

[18]  Thomas Kämpchen,et al.  Zur Kenntnis von Reaktionen des 1,2,4,5‐Tetrazin‐3,6‐dicarbonsäure‐dimethylesters mit Nucleophilen , 1982 .

[19]  Ronald Breslow,et al.  Hydrophobic acceleration of Diels-Alder reactions , 1980 .

[20]  H. Kwart,et al.  The reverse Diels-Alder or retrodiene reaction , 1968 .

[21]  J. Sauer,et al.  Eine Studie der Diels‐Alder‐Reaktion, III: Umsetzungen von 1.2.4.5‐Tetrazinen mit Olefinen. Zur Struktur von Dihydropyridazinen , 1965 .