Recommendations Based on Different Aspects of Influences in Social Media

Among the applications of Web 2.0, social networking sites continue to proliferate and the volume of content keeps growing; as a result, information overload causes difficulty for users attempting to choose useful and relevant information. In this work, we propose a novel recommendation method based on different types of influences: social, interest and popularity, using personal tendencies in regard to these three decision factors to recommend photos in a photo-sharing website, Flickr. Because these influences have different degrees of impact on each user, the personal tendencies related to these three influences are regarded as personalized weights; combining influence scores enables predicting the scores of items. The experimental results show that our proposed methods can improve the quality of recommendations.