A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients
暂无分享,去创建一个
[1] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[2] K. Semra,et al. Three dimensional groundwater quality modelling in heterogeneous media , 1970 .
[3] David Aldous,et al. Stopping Times and Tightness. II , 1978 .
[4] V. Zhikov,et al. AVERAGING AND G-CONVERGENCE OF DIFFERENTIAL OPERATORS , 1979 .
[5] N. Portenko,et al. Diffusion Processes with Generalized Drift Coefficients , 1979 .
[6] N. Portenko,et al. Stochastic Differential Equations with Generalized Drift Vector , 1980 .
[7] J. Harrison,et al. On Skew Brownian Motion , 1981 .
[8] V. Zhikov,et al. G-convergence of parabolic operators , 1981 .
[9] J. Gall,et al. One — dimensional stochastic differential equations involving the local times of the unknown process , 1984 .
[10] D. Stroock,et al. Upper bounds for symmetric Markov transition functions , 1986 .
[11] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[12] Masami Okada,et al. Second order differential operators and Dirichlet integrals with singular coefficients. I: Functional calculus of one-dimensional operators , 1987 .
[13] Daniel W. Stroock,et al. Diffusion semigroups corresponding to uniformly elliptic divergence form operators , 1988 .
[14] Y. Ouknine,et al. “Skew-Brownian Motion” and Derived Processes , 1991 .
[15] D. Lépingle,et al. Un schéma d'Euler pour équations différentielles stochastiques réfléchies , 1993 .
[16] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[17] M. Freidlin,et al. Necessary and Sufficient Conditions for Weak Convergence of One-Dimensional Markov Processes , 1994 .
[18] Dominique Lépingle,et al. Euler scheme for reflected stochastic differential equations , 1995 .
[19] A. Borodin,et al. Handbook of Brownian Motion - Facts and Formulae , 1996 .
[20] A. Rozkosz. Weak convergence of diffusions corresponding to divergence form operators , 1996 .
[21] A. Rozkosz. Stochastic representation of diffusions corresponding to divergence form operators , 1996 .
[22] The Limits of Stochastic Integrals of Differential Forms , 1999 .
[23] R S Cantrell,et al. Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design. , 1999, Theoretical population biology.
[24] Michael V. Tretyakov,et al. SIMULATION OF A SPACE-TIME BOUNDED DIFFUSION , 1999 .
[25] Paul Seignourel. Processus en milieux aleatoires ou irreguliers , 1999 .
[26] A. Lejay,et al. Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence : cas linéaires et semi-linéaires , 2000 .
[27] Ming Zhang,et al. Calculation of Diffusive Shock Acceleration of Charged Particles by Skew Brownian Motion , 2000 .
[28] Antoine Lejay,et al. On the decomposition of excursions measures of processes whose generators have diffusion coefficients discontinuous at one point , 2002 .
[29] Liqing Yan. The Euler scheme with irregular coefficients , 2002 .
[30] Antoine Lejay,et al. Simulating a diffusion on a graph. Application to reservoir engineering , 2003, Monte Carlo Methods Appl..
[31] J. Steele,et al. ITÔ CALCULUS , 2003 .
[32] Miguel Martinez,et al. Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques probabilistes associées , 2004 .
[33] Ann De Schepper,et al. Applications of δ-function perturbation to the pricing of derivative securities , 2004 .
[34] R. Bass,et al. One-Dimensional Stochastic Differential Equations with Singular and Degenerate Coefficients , 2005 .
[35] P. Etoré. On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients , 2006 .