A characterization of the Burr Type III and Type XII distributions through the method of percentiles and the Spearman correlation

ABSTRACT A characterization of Burr Type III and Type XII distributions based on the method of percentiles (MOP) is introduced and contrasted with the method of (conventional) moments (MOM) in the context of estimation and fitting theoretical and empirical distributions. The methodology is based on simulating the Burr Type III and Type XII distributions with specified values of medians, inter-decile ranges, left-right tail-weight ratios, tail-weight factors, and Spearman correlations. Simulation results demonstrate that the MOP-based Burr Type III and Type XII distributions are substantially superior to their (conventional) MOM-based counterparts in terms of relative bias and relative efficiency.

[1]  Pandu R. Tadikamalla,et al.  A Look at the Burr and Related Distributioni , 1980 .

[2]  Jeffrey H. Gove,et al.  Rotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr Type III distribution , 2008 .

[3]  N. A. Mokhlis,et al.  Reliability of a Stress-Strength Model with Burr Type III Distributions , 2005 .

[4]  B. Goodwin,et al.  Modeling Crop prices through a Burr distribution and Analysis of Correlation between Crop Prices and Yields using a Copula method , 2008 .

[5]  G. Marsaglia Evaluating the Normal Distribution , 2004 .

[6]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[7]  Svetlozar T. Rachev,et al.  Operational Risk: A Guide to Basel II Capital Requirements, Models, and Analysis , 2007 .

[8]  Mohan D. Pant,et al.  A Doubling Method for the Generalized Lambda Distribution , 2012 .

[9]  Dallas R. Wingo,et al.  Maximum likelihood methods for fitting the burr type XII distribution to multiply (progressively) censored life test data , 1993 .

[10]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[11]  Samuel Kotz,et al.  On the alternative to the Weibull function , 2007 .

[12]  Mohan D. Pant,et al.  On Simulating Univariate and Multivariate Burr Type III and Type XII Distributions , 2010 .

[13]  Robert N. Rodriguez A guide to the Burr type XII distributions , 1977 .

[14]  Todd C. Headrick A Characterization of Power Method Transformations through L-Moments , 2011 .

[15]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[16]  Paul W. Mielke,et al.  Another Family of Distributions for Describing and Analyzing Precipitation Data , 1973 .

[17]  Thomas E. Wehrly Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods , 2002, Technometrics.

[18]  D. R. Wingo,et al.  Maximum Likelihood Methods for Fitting the Burr Type XII Distribution to Life Test Data , 1983 .

[19]  Irving W. Burr,et al.  Pameters for a general system of distributions to match a grid of α3 and α4 , 1973 .

[20]  Samuel Kotz,et al.  q exponential is a Burr distribution , 2006 .

[21]  G. Marsaglia,et al.  Fast Generation of Discrete Random Variables , 2004 .

[22]  Todd C. Headrick Statistical Simulation: Power Method Polynomials and Other Transformations , 2009 .

[23]  Edward J. Dudewicz,et al.  Handbook of Fitting Statistical Distributions with R , 2010 .

[24]  I. W. Burr Cumulative Frequency Functions , 1942 .

[25]  P. Garcia,et al.  Recovering probabilistic information from option markets: Tests of distributional assumptions , 1996 .

[26]  Graham R. Wood,et al.  Modelling the diameter distribution of forest stands using the Burr distribution , 1996 .

[27]  P. Moran,et al.  Rank correlation and product-moment correlation. , 1948, Biometrika.

[28]  A. Abdel-Ghaly,et al.  The use of Burr type XII distribution on software reliability growth modelling , 1997 .

[29]  Todd C. Headrick,et al.  Simulating Univariate and Multivariate Tukey g -and- h Distributions Based on the Method of Percentiles , 2014 .

[30]  Mohan D. Pant,et al.  A Method for Simulating Burr Type III and Type XII Distributions through -Moments and -Correlations , 2013 .