An image-reject down-converter for 802.11a and HIPERLAN2 wireless LANs

An image-reject down-converter for IEEE 802.11a and ETSI HIPERLAN2 wireless local area networks was implemented in a low-cost 46-GHz-fT silicon bipolar process. The circuit integrates a variable-gain low noise amplifier and a double-balanced mixer along with passive image rejection filters. It exhibits a 4-dB noise figure and a power gain of 23 dB. By reducing the low noise amplifier gain by 9 dB (thanks to a 1-bit gain control), the down-converter achieves an input 1-dB compression point of –14 dBm, while drawing only 23 mA from a 3-V supply voltage. The adopted filtering approach provides an image rejection ratio higher than 60 dB.

[1]  Sorin P. Voinigescu,et al.  5 GHz SiGe HBT monolithic radio transceiver with tunable filtering , 1999, 1999 IEEE Radio Frequency Integrated Circuits Symposium (Cat No.99CH37001).

[2]  John R. Long,et al.  Differentially driven symmetric microstrip inductors , 2002 .

[3]  H. Samavati,et al.  5-GHz CMOS wireless LANs , 2002 .

[4]  K. Vavelidis,et al.  A dual-band 5.15-5.35-GHz, 2.4-2.5-GHz 0.18-/spl mu/m CMOS transceiver for 802.11a/b/g wireless LAN , 2004, IEEE Journal of Solid-State Circuits.

[5]  B.-U. Klepser,et al.  A highly integrated dual-band multimode wireless LAN transceiver , 2004, IEEE Journal of Solid-State Circuits.

[6]  Ahmadreza Rofougaran,et al.  A 5-GHz direct-conversion CMOS transceiver utilizing automatic frequency control for the IEEE 802.11a wireless LAN standard , 2003, IEEE J. Solid State Circuits.

[7]  Calvin Plett,et al.  A 5-GHz radio front-end with automatically Q-tuned notch filter and VCO , 2003, IEEE J. Solid State Circuits.

[8]  H.R. Rategh,et al.  A 5-GHz CMOS wireless LAN receiver front end , 2000, IEEE Journal of Solid-State Circuits.

[9]  B.-U. Klepser,et al.  A highly integrated, dual-band, multi-mode wireless LAN transceiver , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[10]  J. Ryynanen,et al.  A direct conversion RF front-end for 2-GHz WCDMA and 5.8-GHz WLAN applications , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[11]  W.J. McFarland WLAN system trends and the implications for WLAN RFICs , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[12]  Bruce A. Wooley,et al.  A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems , 2002 .

[13]  M. Recouly,et al.  A dual-band 802.11a/b/g radio in 0.18 /spl mu/m CMOS , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[14]  J.R. Long,et al.  A low-voltage 5.1-5.8-GHz image-reject downconverter RF IC , 2000, IEEE Journal of Solid-State Circuits.

[15]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g WLAN , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[16]  Giuseppe Palmisano,et al.  Noise figure and impedance matching in RF cascode amplifiers , 1999 .

[17]  G. Palmisano,et al.  A 5-GHz monolithic silicon bipolar down-converter with on-chip image filtering , 2004, Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521).

[18]  S. Scaccianoce,et al.  A new design approach for variable-gain low noise amplifiers , 2000, 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest of Papers (Cat. No.00CH37096).

[19]  J.R. Long,et al.  A low-voltage 5.1-5.8-GHz image-reject receiver with wide dynamic range , 2000, IEEE Journal of Solid-State Circuits.