On estimating the frequency of a sinusoid in autoregressive multiplicative noise

Abstract In classical spectral or frequency estimation, generally, the case of sinusoids embedded in additive noise is studied. Since this model is not relevant in some cases, this paper considers a new multiplicative model denoted ARCOS: a sinusoid amplitude modulated by a random autoregressive process. The spectral properties of such a model are derived and used to define a new frequency estimator. Modified versions of the corresponding algorithm are proposed and a theoretical formula for the asymptotic variance of the estimator is derived. Numerical simulations are presented to illustrate the specific nature of the model and the respective performances of the algorithms. An extension to AR( p ). AR( q ) processes, which generalizes the spectral properties of ARCOS, is also proposed.

[1]  Ken Sharman,et al.  Performance evaluation of the modified Yule-Walker estimator , 1985, IEEE Trans. Acoust. Speech Signal Process..

[2]  F. Castanie,et al.  ARCOS, weighted ARCOS and Cramer-Rao bounds , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[3]  Olivier Besson Analyse spectrale paramétrique et modèles multiplicatifs : application aux signaux de radar Doppler , 1992 .

[4]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[5]  Yiu-Tong Chan,et al.  Spectral estimation via the high-order Yule-Walker equations , 1982 .

[6]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Arye Nehorai,et al.  Adaptive pole estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[8]  Jae S. Lim,et al.  Properties of the overdetermined normal equation method for spectral estimation when applied to sinusoids in noise , 1985, IEEE Trans. Acoust. Speech Signal Process..

[9]  C. K. Yuen,et al.  Digital spectral analysis , 1979 .

[10]  A. Papoulis,et al.  Random modulation: A review , 1983 .

[11]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[12]  Petre Stoica,et al.  Overdetermined Yule-Walker estimation of the frequencies of multiple sinusoids: Accuracy aspects , 1989 .

[13]  J. Cadzow,et al.  Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.

[14]  F. Castanie,et al.  Doppler frequency estimator performance analysis , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[15]  Benjamin Friedlander,et al.  On the computation of the Cramer Rao bound for ARMA parameter estimation , 1984, ICASSP.

[16]  S. Bruzzone,et al.  Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation , 1984 .

[17]  B. Dickinson,et al.  Efficient solution of covariance equations for linear prediction , 1977 .

[18]  T. Söderström,et al.  High-order Yule-Walker equations for estimating sinusoidal frequencies: the complete set of solutions , 1990 .

[19]  B. Friedlander,et al.  The Modified Yule-Walker Method of ARMA Spectral Estimation , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[20]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[21]  Petre Stoica,et al.  Asymptotic properties of the high-order Yule-Walker estimates of sinusoidal frequencies , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[23]  Benjamin Friedlander On the computation of the Cramer-Rao bound for ARMA parameter estimation , 1984 .

[24]  George R. Cooper,et al.  An empirical investigation of the properties of the autoregressive spectral estimator , 1976, IEEE Trans. Inf. Theory.