Relating Structure and Power: Comonadic Semantics for Computational Resources

Combinatorial games are widely used in finite model theory, constraint satisfaction, modal logic and concurrency theory to characterize logical equivalences between structures. In particular, Ehrenfeucht–Fraïssé games, pebble games and bisimulation games play a central role. We show how each of these types of games can be described in terms of an indexed family of comonads on the category of relational structures and homomorphisms. The index $k$ is a resource parameter that bounds the degree of access to the underlying structure. The coKleisli categories for these comonads can be used to give syntax-free characterizations of a wide range of important logical equivalences. Moreover, the coalgebras for these indexed comonads can be used to characterize key combinatorial parameters: tree depth for the Ehrenfeucht–Fraïssé comonad, tree width for the pebbling comonad and synchronization tree depth for the modal unfolding comonad. These results pave the way for systematic connections between two major branches of the field of logic in computer science, which hitherto have been almost disjoint: categorical semantics and finite and algorithmic model theory.

[1]  Thomas Paine,et al.  A Pebbling Comonad for Finite Rank and Variable Logic, and an Application to the Equirank-variable Homomorphism Preservation Theorem , 2020, MFPS.

[2]  Samson Abramsky,et al.  Whither semantics? , 2020, Theor. Comput. Sci..

[3]  Octavio Zapata,et al.  The Quantum Monad on Relational Structures , 2017, MFCS.

[4]  Pengming Wang,et al.  The pebbling comonad in Finite Model Theory , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[5]  Dominic A. Orchard,et al.  Combining effects and coeffects via grading , 2016, ICFP.

[6]  Tarmo Uustalu,et al.  When is a container a comonad? , 2012, Log. Methods Comput. Sci..

[7]  Luca Aceto,et al.  Resource bisimilarity and graded bisimilarity coincide , 2010, Inf. Process. Lett..

[8]  Thorsten Altenkirch,et al.  Monads need not be endofunctors , 2010, Log. Methods Comput. Sci..

[9]  Davide Sangiorgi,et al.  On the origins of bisimulation and coinduction , 2009, TOPL.

[10]  Benjamin Rossman,et al.  Homomorphism preservation theorems , 2008, JACM.

[11]  Tarmo Uustalu,et al.  Comonadic Notions of Computation , 2008, CMCS.

[12]  Jouko Vnnen,et al.  Dependence Logic: A New Approach to Independence Friendly Logic (London Mathematical Society Student Texts) , 2007 .

[13]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[14]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[15]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[16]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[17]  Rocco De Nicola,et al.  Graded Modalities and Resource Bisimulation , 1999, FSTTCS.

[18]  Erich Grädel,et al.  Invited Talk: Decision procedures for guarded logics , 1999, CADE.

[19]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[20]  M. de Rijke,et al.  A Note on Graded Modal Logic , 1996, Stud Logica.

[21]  Ramon Jansana,et al.  On Elementary Equivalence for Equality-free Logic , 1996, Notre Dame J. Formal Log..

[22]  Glynn Winskel,et al.  Bisimulation and open maps , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[23]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[24]  Lauri Hella,et al.  Logical hierarchies in PTIME , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[25]  Phokion G. Kolaitis,et al.  Infinitary Logics and 0-1 Laws , 1992, Inf. Comput..

[26]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[27]  Phokion G. Kolaitis,et al.  On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..

[28]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[29]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[30]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[31]  Saharon Shelah,et al.  Every two elementarily equivalent models have isomorphic ultrapowers , 1971 .

[32]  S. Eilenberg,et al.  Adjoint functors and triples , 1965 .

[33]  P. Dedecker Review: Roland Fraisse, Sur Quelques Classifications des Systemes de Relations , 1957 .

[34]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[35]  Dominic A. Orchard Programming contextual computations , 2014 .

[36]  Martin Otto,et al.  The Freedoms of (Guarded) Bisimulation , 2014, Johan van Benthem on Logic and Information Dynamics.

[37]  Dana Scott,et al.  LOGIC WITH DENUMERABLY LONG FORMULAS AND FINITE STRINGS OF QUANTIFIERS , 2014 .

[38]  Martin Otto,et al.  The Freedoms of Guarded Bisimulation , 2011, CSL.

[39]  J. Väänänen Dependence Logic: References , 2007 .

[40]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[41]  V. E. Cazanescu Algebraic theories , 2004 .

[42]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[43]  Erich Grädel,et al.  Decision procedures for guarded logics , 1999 .

[44]  T. Kloks Treewidth: Computations and Approximations , 1994 .

[45]  Phokion G. Kolaitis In nitary Logi s and 0-1 Laws , 1992 .

[46]  C. J. Koomen Calculus of Communicating Systems , 1991 .

[47]  Y. Gurevich On Finite Model Theory , 1990 .

[48]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[49]  Friedrich Ulmer,et al.  Properties of dense and relative adjoint functors , 1968 .

[50]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .