Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease

Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis and benign adult familial myoclonic epilepsies. Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in FMR1, we directly searched for repeat expansion mutations and identified noncoding CGG repeat expansions in NBPF19 (NOTCH2NLC) as the causative mutations for NIID. Further prompted by the similarities in the clinical and neuroimaging findings with NIID, we identified similar noncoding CGG repeat expansions in two other diseases: oculopharyngeal myopathy with leukoencephalopathy and oculopharyngodistal myopathy, in LOC642361/NUTM2B-AS1 and LRP12, respectively. These findings expand our knowledge of the clinical spectra of diseases caused by expansions of the same repeat motif, and further highlight how directly searching for expanded repeats can help identify mutations underlying diseases.Whole-genome sequencing identifies noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and oculopharyngeal myopathy with leukoencephalopathy, three disorders with overlapping clinical features and neuroimaging findings.

Shinichi Morishita | Yasuo Terao | Yuko Saito | Koichiro Doi | Jun Mitsui | Hiroyuki Ishiura | Shigeo Murayama | Masashi Hamada | Atsushi Iwata | Tatsushi Toda | Yaeko Ichikawa | Ichizo Nishino | Shen-Yang Lim | Yuji Takahashi | Hisatomo Kowa | Hidetoshi Date | Akitoshi Takeda | Jun Shimizu | Yasuo Harigaya | T. Matsukawa | Jun Shinmi | M. Hamada | I. Nishino | S. Morishita | Y. Terao | Y. Shiio | S. Murayama | H. Ishiura | Yuji Takahashi | J. Goto | H. Date | J. Mitsui | Y. Ichikawa | A. Iwata | T. Toda | J. Yoshimura | K. Doi | Yuta Suzuki | W. Qu | Y. Harigaya | Y. Kohno | A. Tan | Y. Shirota | Shen-Yang Lim | Takuya Sasaki | Yuichiro Shirota | T. Mano | J. Shimizu | Katsuhisa Ogata | Shoji Tsuji | Yutaka Kohno | Yasushi Shiio | H. Kowa | M. Matsukawa | Shota Shibata | Aki Mitsue | Masaki Tanaka | Y. Sakiyama | Yuko Saito | Akitoshi Takeda | H. Hatsuta | Jun Goto | S. Morimoto | Yuta Suzuki | Jun Yoshimura | Miho Kawabe Matsukawa | Wei Qu | Shota Shibata | Aki Mitsue | Masaki Tanaka | Takashi Matsukawa | Yoshio Sakiyama | M Asem Almansour | Junko Kanda Kikuchi | Makiko Taira | Tatsuo Mano | Ryo Ohtomo | Hiroyuki Hatsuta | Satoru Morimoto | Akihiko Mitsutake | Mizuho Kawai | Takuya Sasaki | Yusuke Sugiyama | Gaku Ohtomo | Yoshihiko Nakazato | Yumi Umeda-Kameyama | Jun Shinmi | Ai Huey Tan | Y. Nakazato | K. Ogata | R. Ohtomo | Y. Umeda-Kameyama | Shigeo Murayama | A. Mitsutake | Makiko Taira | Yusuke Sugiyama | Shoji Tsuji | S. Tsuji | G. Ohtomo | S. Shibata | M. A. Almansour | Mizuho Kawai | Yutaka Suzuki | Tatsushi Toda | Y. Kohno

[1]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[2]  David Gacquer,et al.  Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation , 2018, Cell.

[3]  J. Brunberg,et al.  Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. , 2004, JAMA.

[4]  D. Nguyen,et al.  Expanded clinical phenotype of women with the FMR1 premutation , 2008, American journal of medical genetics. Part A.

[5]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[6]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[7]  M. Uchino,et al.  Autosomal recessive oculopharyngodistal myopathy in light of distal myopathy with rimmed vacuoles and oculopharyngeal muscular dystrophy , 1998, Neuromuscular Disorders.

[8]  S. Mead,et al.  Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion , 2015, Neurobiology of Aging.

[9]  S. Tsuji,et al.  An Autopsy Case of Familial Neuronal Intranuclear Inclusion Disease with Dementia and Neuropathy , 2018, Internal medicine.

[10]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[11]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[12]  P. Jin,et al.  RNA-Binding Proteins hnRNP A2/B1 and CUGBP1 Suppress Fragile X CGG Premutation Repeat-Induced Neurodegeneration in a Drosophila Model of FXTAS , 2007, Neuron.

[13]  R. Wilson,et al.  Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X , 2001, Neurology.

[14]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[15]  Martin C. Frith,et al.  Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads , 2019, Genome Biology.

[16]  R. Edis,et al.  Familial neuronal intranuclear inclusion disease with ubiquitin positive inclusions , 1998, Journal of the Neurological Sciences.

[17]  Michael R. Hunsaker,et al.  Widespread non-central nervous system organ pathology in fragile X premutation carriers with fragile X-associated tremor/ataxia syndrome and CGG knock-in mice , 2011, Acta Neuropathologica.

[18]  E. Satoyoshi Distal myopathy. , 1990, The Tohoku journal of experimental medicine.

[19]  J. Palo,et al.  Neuronal intranuclear inclusion disease in identical twins , 1984, Annals of neurology.

[20]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[21]  Hitoshi Miyazawa,et al.  Homozygosity haplotype allows a genomewide search for the autosomal segments shared among patients. , 2007, American journal of human genetics.

[22]  H. Watanabe,et al.  Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease , 2011, Neurology.

[23]  P. Jin,et al.  Pur α Binds to rCGG Repeats and Modulates Repeat-Mediated Neurodegeneration in a Drosophila Model of Fragile X Tremor/Ataxia Syndrome , 2007, Neuron.

[24]  Thomas D. Bird,et al.  A familial neuronal disease presenting as intestinal pseudoobstruction , 1978 .

[25]  G. Sobue,et al.  Neuronal intranuclear hyaline inclusion disease showing motor-sensory and autonomic neuropathy , 2005, Neurology.

[26]  S. Murayama,et al.  Adult‐onset neuronal intranuclear hyaline inclusion disease is not rare in older adults , 2016, Geriatrics & gerontology international.

[27]  Koji Abe,et al.  Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy , 2018, Nature Genetics.

[28]  N. Rikitomi,et al.  Effect of ampicillin, cefmetazole and minocycline on the adherence of Branhamella catarrhalis to pharyngeal epithelial cells. , 1990, The Tohoku journal of experimental medicine.

[29]  David Haussler,et al.  Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis , 2018, Cell.

[30]  E. Satoyoshi,et al.  Oculopharyngodistal myopathy. , 1977, Archives of neurology.

[31]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[32]  Tyson A. Clark,et al.  Direct detection of DNA methylation during single-molecule, real-time sequencing , 2010, Nature Methods.

[33]  Fang Wang,et al.  CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data , 2012, Nucleic acids research.

[34]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[35]  P. Jong,et al.  Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy , 1992, Nature.

[36]  M. Swanson,et al.  Intron retention induced by microsatellite expansions as a disease biomarker , 2018, Proceedings of the National Academy of Sciences.

[37]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[38]  J. Rommens,et al.  Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy , 1998, Nature Genetics.

[39]  T. Kanda,et al.  PML Nuclear Bodies Are Altered in Adult-Onset Neuronal Intranuclear Hyaline Inclusion Disease , 2017, Journal of neuropathology and experimental neurology.

[40]  H. Matsuda,et al.  MR Imaging Features of the Cerebellum in Adult-Onset Neuronal Intranuclear Inclusion Disease: 8 Cases , 2017, American Journal of Neuroradiology.

[41]  J. Greenberg,et al.  Prevalence of CGG expansions of the FMR1 gene in a US population‐based sample , 2012, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[42]  Anna Ingolfsdottir,et al.  Allegro version 2 , 2005, Nature Genetics.

[43]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[44]  G. Sobue,et al.  Neuronal intranuclear inclusion disease cases with leukoencephalopathy diagnosed via skin biopsy , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[45]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[46]  Kazuki Ichikawa,et al.  Landscape of CpG methylation of individual repetitive elements , 2015 .

[47]  G. Sobue,et al.  Clinicopathological features of adult-onset neuronal intranuclear inclusion disease , 2016, Brain : a journal of neurology.

[48]  I. Silveira,et al.  Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene , 2016, Neurobiology of Aging.

[49]  Melanie Bahlo,et al.  Recent advances in the detection of repeat expansions with short-read next-generation sequencing , 2018, F1000Research.

[50]  M. Herman,et al.  A light and electron microscopy study of an unusual widespread nuclear inclusion body disease , 1968, Acta Neuropathologica.

[51]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[52]  H. Lv,et al.  Clinical and Muscle Imaging Findings in 14 Mainland Chinese Patients with Oculopharyngodistal Myopathy , 2015, PloS one.

[53]  F. Speleman,et al.  A novel gene family NBPF: intricate structure generated by gene duplications during primate evolution. , 2005, Molecular biology and evolution.

[54]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[55]  Yuji Takahashi,et al.  Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing , 2013, Bioinform..

[56]  U. Frey,et al.  PCR-amplification of GC-rich regions: 'slowdown PCR' , 2008, Nature Protocols.

[57]  K. Bushby,et al.  Oculopharyngodistal myopathy is a distinct entity , 2011, Neurology.

[58]  Yuji Takahashi,et al.  SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data , 2009, BMC Bioinformatics.