Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.

[1]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[2]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[3]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[4]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[5]  S. Chou,et al.  Graphene transistors fabricated via transfer-printing in device active-areas on large wafer , 2007 .

[6]  E. Williams,et al.  Printed Graphene Circuits , 2007, 0809.1634.

[7]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[8]  Kang L. Wang,et al.  A chemical route to graphene for device applications. , 2007, Nano letters.

[9]  S. Stankovich,et al.  Graphene-silica composite thin films as transparent conductors. , 2007, Nano letters.

[10]  B. Wees,et al.  Electronic spin transport and spin precession in single graphene layers at room temperature , 2007, Nature.

[11]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[12]  Martina Hausner,et al.  Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets , 2007, 0706.0029.

[13]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[14]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[15]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[16]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[17]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[18]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[19]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[20]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[21]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[22]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[23]  M. Chhowalla,et al.  Design criteria for transparent single-wall carbon nanotube thin-film transistors. , 2006, Nano letters.

[24]  Irina V. Grigorieva,et al.  Submicron sensors of local electric field with single-electron resolution at room temperature , 2006 .

[25]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .

[26]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[27]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[28]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[29]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[30]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[31]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[32]  Masahiro Fujiwara,et al.  Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles , 2004 .

[33]  Leonard M. Sander,et al.  Unusual temperature dependence of the resistivity of exfoliated graphites , 1983 .