Statistics for spatial functional data

Functional Data Analysis is a relatively new branch in Statistics. Experiments where a complete function is observed for each individual give rise to functional data. In this work we focus on the case of functional data presenting spatial dependence. The three classic types of spatial data structures (geostatistical data, point patterns and areal data) can be combined with functional data as it is shown in the examples of each situation provided here. We also review some contributions in the literature on spatial functional data.

[1]  M. Voltz,et al.  Geostatistical Interpolation of Curves: A Case Study in Soil Science , 1993 .

[2]  D. Myers Matrix formulation of co-kriging , 1982 .

[3]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[4]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[5]  B. Mallick,et al.  Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis , 2008, Biometrics.

[6]  Wenceslao González-Manteiga,et al.  Statistics for Functional Data , 2007, Comput. Stat. Data Anal..

[7]  N. Cressie,et al.  Multivariable spatial prediction , 1994 .

[8]  Jorge Mateu,et al.  Covariance functions that are stationary or nonstationary in space and stationary in time , 2007 .

[9]  A. Gelfand,et al.  Hybrid Dirichlet mixture models for functional data , 2009 .

[10]  Claude Manté,et al.  Cokriging for spatial functional data , 2010, J. Multivar. Anal..

[11]  Pascal Monestiez,et al.  A Cokriging Method for Spatial Functional Data with Applications in Oceanology , 2008 .

[12]  B. Ripley Modelling Spatial Patterns , 1977 .

[13]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[14]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[15]  Patrick Bogaert,et al.  Comparison of kriging techniques in a space-time context , 1996 .

[16]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[17]  S. Fotheringham,et al.  Geographically weighted regression : modelling spatial non-stationarity , 1998 .

[18]  J. Mateu,et al.  Detecting Features in Spatial Point Processes with Clutter via Local Indicators of Spatial Association , 2007 .

[19]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[20]  Erica E. Benson,et al.  Principal Component Analysis for Spatial Point Processes — Assessing the Appropriateness of the Approach in an Ecological Context , 2006 .

[21]  BSTRACT,et al.  1 NONPARAMETRIC FUNCTIONAL DATA ANALYSIS THROUGH BAYESIAN DENSITY ESTIMATION , 2007 .

[22]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[23]  Jorge Mateu,et al.  Point-wise Kriging for Spatial Prediction of Functional Data , 2008 .

[24]  Liliane Bel,et al.  Spatio-temporal functional regression on paleoecological data , 2008 .

[25]  Mariano J. Valderrama,et al.  An overview to modelling functional data , 2007, Comput. Stat..

[26]  A. Gelfand,et al.  Bayesian Nonparametric Functional Data Analysis Through Density Estimation. , 2009, Biometrika.

[27]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[28]  Sophie Dabo-Niang,et al.  Functional and operatorial statistics , 2008 .

[29]  Distance-based LISA maps for multivariate lattice data , 2008 .

[30]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[31]  L. Glass,et al.  General: Uniform Distribution of Objects in a Homogeneous Field: Cities on a Plain , 1971, Nature.

[32]  S. Dabo‐Niang,et al.  Kernel regression estimation for continuous spatial processes , 2007 .

[33]  Yoshihiro Yamanishi,et al.  GEOGRAPHICALLY WEIGHTED FUNCTIONAL MULTIPLE REGRESSION ANALYSIS: A NUMERICAL INVESTIGATION(Functional Data Analysis) , 2003 .

[34]  Sophie Dabo-Niang,et al.  MEAN SQUARE PROPERTIES OF A CLASS OF KERNEL DENSITY ESTIMATES FOR SPATIAL FUNCTIONAL RANDOM VARIABLES , 2008 .

[35]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[36]  J. Mateu,et al.  Ordinary kriging for function-valued spatial data , 2011, Environmental and Ecological Statistics.

[37]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .