More Accurate Analysis of Sum-Product Decoding of LDPC Codes Using a Gaussian Approximation

This letter presents a more accurate mathematical analysis, with respect to the one performed in Chung <italic>et al.</italic>’s 2001 paper, of belief-propagation decoding for low-density parity-check (LDPC) codes on memoryless binary input—additive white Gaussian noise channels, when considering a Gaussian approximation (GA) for message densities under density evolution. The recurrent sequence, defined in Chung <italic>et al.</italic>’s 2001 paper, describing the message passing between variable and check nodes follows from the GA approach and involves the function <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {\phi (x)}$ </tex-math></inline-formula>, therein defined, and its inverse. The analysis of this function is here resumed and studied in depth to obtain tighter upper and lower bounds on it. Moreover, unlike the upper bound given in the above cited paper, the tighter upper bound on <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {\phi (x)}$ </tex-math></inline-formula> is invertible. This allows a more accurate evaluation of the asymptotical performance of sum-product decoding of LDPC codes when a GA is assumed.

[1]  Fulvio Babich,et al.  Analysis and design of rate compatible LDPC codes , 2016, 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[2]  Fulvio Babich,et al.  Low complexity rate compatible puncturing patterns design for LDPC codes , 2017, 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM).

[3]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[4]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[5]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[6]  F. Babich,et al.  Low‐complexity bound on irregular LDPC belief‐propagation decoding thresholds using a Gaussian approximation , 2018, Electronics Letters.

[7]  Fulvio Babich,et al.  Distortion estimation algorithms for real-time video streaming: An application scenario , 2011, SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks.

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  Fulvio Babich,et al.  Turbo codes construction for robust hybrid multitransmission schemes , 2011, SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks.

[10]  Fulvio Babich,et al.  Useful Mathematical Tools for Capacity Approaching Codes Design , 2017, IEEE Communications Letters.

[11]  Kwok Hung Li,et al.  Bit-error rate analysis of low-density parity-check codes with generalised selection combining over a rayleigh-fading channel using gaussian approximation , 2012, IET Commun..

[12]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[13]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[14]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[15]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .