Revealing the Synaptic Hodology of Mammalian Neural Circuits With Multiscale Neurocartography

The functional features of neural circuits are determined by a combination of properties that range in scale from projections systems across the whole brain to molecular interactions at the synapse. The burgeoning field of neurocartography seeks to map these relevant features of brain structure—spanning a volume ∼20 orders of magnitude—to determine how neural circuits perform computations supporting cognitive function and complex behavior. Recent technological breakthroughs in tissue sample preparation, high-throughput electron microscopy imaging, and automated image analyses have produced the first visualizations of all synaptic connections between neurons of invertebrate model systems. However, the sheer size of the central nervous system in mammals implies that reconstruction of the first full brain maps at synaptic scale may not be feasible for decades. In this review, we outline existing and emerging technologies for neurocartography that complement electron microscopy-based strategies and are beginning to derive some basic organizing principles of circuit hodology at the mesoscale, microscale, and nanoscale. Specifically, we discuss how a host of light microscopy techniques including array tomography have been utilized to determine both long-range and subcellular organizing principles of synaptic connectivity. In addition, we discuss how new techniques, such as two-photon serial tomography of the entire mouse brain, have become attractive approaches to dissect the potential connectivity of defined cell types. Ultimately, principles derived from these techniques promise to facilitate a conceptual understanding of how connectomes, and neurocartography in general, can be effectively utilized toward reaching a mechanistic understanding of circuit function.

[1]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[2]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[3]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[4]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[5]  Charles R. Gerfen,et al.  High-performance probes for light and electron microscopy , 2015, Nature Methods.

[6]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[7]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[8]  Anthony M Zador,et al.  High-throughput mapping of single neuron projections by sequencing of barcoded RNA , 2016, bioRxiv.

[9]  U. Valentin Nägerl,et al.  Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue , 2018, Cell.

[10]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[11]  Justus M. Kebschull,et al.  High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA , 2016, Neuron.

[12]  Thomas A. Blanpied,et al.  A transsynaptic nanocolumn aligns neurotransmitter release to receptors , 2016, Nature.

[13]  Paul W. Tillberg,et al.  OPTICAL IMAGING Expansion microscopy , 2015 .

[14]  Bong-Kiun Kaang,et al.  Interregional synaptic maps among engram cells underlie memory formation , 2018, Science.

[15]  Tianyi Mao,et al.  A comprehensive thalamocortical projection map at the mesoscopic level , 2014, Nature Neuroscience.

[16]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[17]  M. Häusser,et al.  All-Optical Interrogation of Neural Circuits , 2015, The Journal of Neuroscience.

[18]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[19]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[20]  Randy M. Bruno,et al.  Comparative Strength and Dendritic Organization of Thalamocortical and Corticocortical Synapses onto Excitatory Layer 4 Neurons , 2014, The Journal of Neuroscience.

[21]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[22]  J. Knierim,et al.  Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory , 2006, Hippocampus.

[23]  W. Denk,et al.  Staining and embedding the whole mouse brain for electron microscopy , 2012, Nature Methods.

[24]  Mark S. Cembrowski,et al.  Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells , 2016, Neuron.

[25]  Kristina D Micheva,et al.  Mapping Synapses by Conjugate Light-Electron Array Tomography , 2015, The Journal of Neuroscience.

[26]  Edward M. Callaway,et al.  Genetic Dissection of Neural Circuits: A Decade of Progress. , 2018, Neuron.

[27]  Hanchuan Peng,et al.  mGRASP enables mapping mammalian synaptic connectivity with light microscopy , 2011, Nature Methods.

[28]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[29]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[30]  Kristen M Harris,et al.  Ultrastructure of synapses in the mammalian brain. , 2012, Cold Spring Harbor perspectives in biology.

[31]  Karel Svoboda,et al.  A platform for brain-wide imaging and reconstruction of individual neurons , 2016, eLife.

[32]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[33]  S. Herculano‐Houzel The Human Brain in Numbers: A Linearly Scaled-up Primate Brain , 2009, Front. Hum. Neurosci..

[34]  Christopher T. Zugates,et al.  Cortical Column and Whole Brain Imaging of Neural Circuits with Molecular Contrast and Nanoscale Resolution , 2018, bioRxiv.

[35]  Alon Poleg-Polsky,et al.  Species-specific wiring for direction selectivity in the mammalian retina , 2016, Nature.

[36]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[37]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[38]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[39]  J. Betley,et al.  Parallel, Redundant Circuit Organization for Homeostatic Control of Feeding Behavior , 2013, Cell.

[40]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[41]  W. Scheirer,et al.  Reconstruction of genetically identified neurons imaged by serial-section electron microscopy , 2016, eLife.

[42]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[43]  Ole Petter Ottersen,et al.  Immunogold cytochemistry in neuroscience , 2013, Nature Neuroscience.

[44]  Eugene W. Myers,et al.  Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography , 2013, Front. Neural Circuits.

[45]  M. Helmstaedter,et al.  Axonal synapse sorting in medial entorhinal cortex , 2017, Nature.

[46]  Louis K. Scheffer,et al.  A genetically specified connectomics approach applied to long-range feeding regulatory circuits , 2014, Nature Neuroscience.

[47]  Jinhyung Kim,et al.  Schaffer Collateral Inputs to CA1 Excitatory and Inhibitory Neurons Follow Different Connectivity Rules , 2018, The Journal of Neuroscience.

[48]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[49]  J. P. Little,et al.  Subcellular Synaptic Connectivity of Layer 2 Pyramidal Neurons in the Medial Prefrontal Cortex , 2012, The Journal of Neuroscience.

[50]  Kristina D. Micheva,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[51]  S. Petersen,et al.  Brain Networks and Cognitive Architectures , 2015, Neuron.

[52]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[53]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[54]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[55]  Masahiko Watanabe,et al.  Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling , 2014, Nature Neuroscience.

[56]  Miranda Robertson,et al.  Biology in the 1980s, plus or minus a decade , 1980, Nature.

[57]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[58]  Michael D. Ehlers,et al.  Molecular genetics and imaging technologies for circuit-based neuroanatomy , 2009, Nature.

[59]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[60]  Liqun Luo,et al.  Viral-genetic tracing of the input–output organization of a central norepinephrine circuit , 2015, Nature.

[61]  K. Amunts,et al.  Towards multimodal atlases of the human brain , 2006, Nature Reviews Neuroscience.

[62]  G. Knott,et al.  Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics , 2015, Nature Methods.

[63]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[64]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Bruce H. Pillman Super-Resolution Imaging , 2013, J. Electronic Imaging.

[66]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[67]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[68]  Sandro Romani,et al.  A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus , 2018, Nature Neuroscience.

[69]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex, IV terminations upon spiny dendrites , 1977, Journal of neurocytology.

[70]  Michael B. Reiser,et al.  A Connectome Based Hexagonal Lattice Convolutional Network Model of the Drosophila Visual System , 2018, ArXiv.

[71]  Attila Losonczy,et al.  Rabies Virus CVS-N2cΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability , 2016, Neuron.

[72]  W. Denk,et al.  High-resolution whole-brain staining for electron microscopic circuit reconstruction , 2015, Nature Methods.

[73]  J. Magee,et al.  Structured Synaptic Connectivity between Hippocampal Regions , 2014, Neuron.

[74]  Liqun Luo,et al.  Teneurin-3 controls topographic circuit assembly in the hippocampus , 2018, Nature.

[75]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[76]  Mark T. Harnett,et al.  Dendritic Spines Prevent Synaptic Voltage Clamp , 2018, Neuron.

[77]  Mark S. Cembrowski,et al.  Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites , 2018, Nature Neuroscience.

[78]  Martin Hruska,et al.  Synaptic nanomodules underlie the organization and plasticity of spine synapses , 2018, Nature Neuroscience.

[79]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[80]  Kai Licha,et al.  Optical imaging. , 2013, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[81]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[82]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[83]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.