Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy.

The cpDNA of Welwitschia mirabilis (the only species of Welwitschiales) was recently reported to be the most reduced and compact among photosynthetic land plants. However, cpDNAs of the other two gnetophyte lineages (viz. Ephedrales and Gnetales) have not yet been studied. It remains unclear what underlining mechanisms have downsized the cpDNA. To pin down major factors for cpDNA reduction and compaction in gnetophytes, we have determined 4 complete cpDNAs, including one from each of the 3 gnetophyte orders, Ephedra equisetina, Gnetum parvifolium, and W. mirabilis, and one from the non-Pinus Pinaceae, Keteleeria davidiana. We report that the cpDNAs of E. equisetina (109,518bp) and G.parvifolium (114,914bp) are not only smaller but more compact than that of W. mirabilis (118,919bp). The gnetophyte cpDNAs have commonly lost at least 18 genes that are retained in other seed plants. Furthermore, they have significantly biased usages of AT-rich codons and shorter introns and intergenic spaces, which are largely due to more deletions at inter-operon than intra-operon spaces and removal of segment sequences rather than single-nucleotides. We show that the reduced gnetophyte cpDNAs clearly resulted from selection for economy by deletions of genes and non-coding sequences, which then led to the compactness and the accelerated substitution rates. The smallest C-values in gnetophyte nuclear DNAs and the competitive or resource-poor situations encountered by gnetophytes further suggest a critical need for an economic strategy.

[1]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Ehrenberg,et al.  Growth-optimizing accuracy of gene expression. , 1987, Annual review of biophysics and biophysical chemistry.

[3]  M. Wojciechowski,et al.  Phylogenetic Relationships in Ephedra (Gnetales): Evidence from Nuclear and Chloroplast DNA Sequence Data , 2004 .

[4]  Nuclear DNA C-values Complete Familial Representation in Gymnosperms , 2001 .

[5]  R. Bungard,et al.  Photosynthetic evolution in parasitic plants: insight from the chloroplast genome , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[6]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[7]  W. Friedman The evolution of double fertilization and endosperm: an ”historical” perspective , 1998, Sexual Plant Reproduction.

[8]  R. Jansen,et al.  Extensive Rearrangements in the Chloroplast Genome of Trachelium caeruleum Are Associated with Repeats and tRNA Genes , 2008, Journal of Molecular Evolution.

[9]  D. Roff On Being the Right Size , 1981, The American Naturalist.

[10]  T. Gregory,et al.  Insertion-deletion biases and the evolution of genome size. , 2004, Gene.

[11]  T. Shikanai,et al.  RNA editing in plant organelles: machinery, physiological function and evolution , 2006, Cellular and Molecular Life Sciences CMLS.

[12]  C. Kurland,et al.  Growth rate-optimised tRNA abundance and codon usage. , 1997, Journal of molecular biology.

[13]  J. Maniloff,et al.  The minimal cell genome: "on being the right size". , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Feild,et al.  Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. , 2008, The New phytologist.

[16]  Chung-Shien Wu,et al.  Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. , 2007, Molecular biology and evolution.

[17]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[18]  Linda A. Raubeson,et al.  The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates , 2008, BMC Evolutionary Biology.

[19]  M. Watson,et al.  A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. , 2000, American journal of botany.

[20]  Eduardo P C Rocha,et al.  Base composition bias might result from competition for metabolic resources. , 2002, Trends in genetics : TIG.

[21]  G. Drouin,et al.  Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. , 2006, Molecular phylogenetics and evolution.

[22]  M. Nei,et al.  Molecular Evolution and Phylogenetics , 2000 .

[23]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[24]  D. Daley,et al.  Why genes persist in organelle genomes , 2005, Genome Biology.

[25]  J. G. Burleigh,et al.  Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. , 2004, American journal of botany.

[26]  L. Bromham,et al.  Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. , 2003, Molecular biology and evolution.

[27]  A. Barbrook,et al.  Why are plastid genomes retained in non-photosynthetic organisms? , 2006, Trends in plant science.

[28]  M. W. Gray,et al.  Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. , 1993, Science.

[29]  R. Jansen,et al.  Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). , 2005, Molecular biology and evolution.

[30]  C. Thacker,et al.  RATES OF MOLECULAR EVOLUTION: Phylogenetic Issues and Applications , 1996 .

[31]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[32]  Zi-qiang Wang A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny. , 2004, Annals of botany.

[33]  Cristian I. Castillo-Davis,et al.  Selection for short introns in highly expressed genes , 2002, Nature Genetics.

[34]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[35]  J. Palmer,et al.  Contrasting modes and tempos of genome evolution in land plant organelles. , 1990, Trends in genetics : TIG.

[36]  Robert K. Jansen,et al.  Chloroplast genomes of plants. , 2005 .

[37]  J. Palmer,et al.  Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Jansen,et al.  Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. , 2007, Molecular biology and evolution.

[39]  W. Martin,et al.  Why have organelles retained genomes? , 1999, Trends in genetics : TIG.

[40]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[41]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[42]  Uwe G Maier,et al.  Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii , 2007, BMC Plant Biology.

[43]  W. Miller,et al.  Mulan: multiple-sequence local alignment and visualization for studying function and evolution. , 2005, Genome research.

[44]  B. Godelle,et al.  Reducing the genome size of organelles favours gene transfer to the nucleus. , 2001, Trends in ecology & evolution.

[45]  R. Viola,et al.  Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. , 2008, Molecular biology and evolution.

[46]  S. Chaw,et al.  Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots , 2008, BMC Evolutionary Biology.

[47]  H. Stenøien Compact genes are highly expressed in the moss Physcomitrella patens. , 2007, Journal of evolutionary biology.

[48]  G. Attardi Animal mitochondrial DNA: an extreme example of genetic economy. , 1985, International review of cytology.

[49]  Frédéric Partensky,et al.  Accelerated evolution associated with genome reduction in a free-living prokaryote , 2005, Genome Biology.

[50]  N. Moran,et al.  Genomics and evolution of heritable bacterial symbionts. , 2008, Annual review of genetics.

[51]  G. Hausner,et al.  Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. , 2001, RNA.

[52]  C. Slamovits,et al.  Genome Compaction and Stability in Microsporidian Intracellular Parasites , 2004, Current Biology.

[53]  C. dePamphilis,et al.  Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. , 2008, Molecular biology and evolution.

[54]  H. Ochman,et al.  Distribution of chromosome length variation in natural isolates of Escherichia coli. , 1998, Molecular biology and evolution.

[55]  A. Jacquier,et al.  Group II introns: elaborate ribozymes. , 1996, Biochimie.

[56]  C. Kurland,et al.  Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. , 1996, Journal of molecular biology.

[57]  Xavier Messeguer,et al.  DnaSP, DNA polymorphism analyses by the coalescent and other methods , 2003, Bioinform..

[58]  V. Emilsson,et al.  Growth rate dependence of transfer RNA abundance in Escherichia coli. , 1990, The EMBO journal.

[59]  R. Price,et al.  Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. , 2003, Molecular biology and evolution.

[60]  S. Kelchner Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. , 2002, American journal of botany.

[61]  M. Seely,et al.  Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert (including a bibliography) , 2000, Plant Ecology.

[62]  M. Sugiura,et al.  Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16 , 1992, Molecular and General Genetics MGG.

[63]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[64]  D. von Willert,et al.  Welwitschia mirabilis: CAM or not CAM - what is the answer? , 2005, Functional plant biology : FPB.

[65]  J. M. Comeron,et al.  What controls the length of noncoding DNA? , 2001, Current opinion in genetics & development.

[66]  C. Kurland,et al.  Is there a unique ribosome phenotype for naturally occurring Escherichia coli? , 1991, Biochimie.

[67]  J. Palmer,et al.  Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Söll,et al.  Global Responses of Methanococcus maripaludis to Specific Nutrient Limitations and Growth Rate , 2008, Journal of bacteriology.

[69]  Michael J. Donoghue,et al.  Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach , 1986, The Botanical Review.

[70]  Jeffrey P. Mower,et al.  The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. , 2006, Molecular biology and evolution.

[71]  A. Zharkikh,et al.  Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. , 1997, Molecular biology and evolution.

[72]  M. Suyama,et al.  Evolution of prokaryotic gene order: genome rearrangements in closely related species. , 2001, Trends in genetics : TIG.

[73]  K. Umesono,et al.  Comparative and functional anatomy of group II catalytic introns--a review. , 1989, Gene.

[74]  F. Tajima,et al.  Simple methods for testing the molecular evolutionary clock hypothesis. , 1993, Genetics.

[75]  Harold J. Morowitz,et al.  Genome size and evolution , 1972, Chromosoma.

[76]  Robert J Henry,et al.  Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants , 2004 .