THE EQUATION XA + AX ∗ = 0 AND THE DIMENSION OF ∗ CONGRUENCE ORBITS ∗

We solve the matrix equation XA+AX� = 0, where A 2 Cn×n is an arbitrary given square matrix, and we compute the dimension of its solution space. This dimension coincides with the codimension of the tangent space of thecongruence orbit of A. Hence, we also obtain the (real) dimension ofcongruence orbits in C n×n . As an application, we determine the generic canonical structure forcongruence in C n×n and also the generic Kronecker canonical form ofpalindromic pencils A + �A � .

[1]  C. S. Ballantine A note on the matrix equation H = AP + PA∗ , 1969 .

[2]  Roger A. Horn,et al.  Canonical forms for complex matrix congruence and ∗congruence , 2006, 0709.2473.

[3]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[4]  R. Horn,et al.  Canonical matrices of bilinear and sesquilinear forms , 2007, 0709.2408.

[5]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[6]  Fernando De Ter The solution of the equation XA + AX T = 0 and its application to the theory of orbits ∗ , 2010 .

[7]  Daniel Kressner,et al.  Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.

[8]  P. Lancaster,et al.  On the Matrix Equation $AX + X^ * A^ * = C$ , 1983 .

[9]  Vladimir V. Sergeichuk CLASSIFICATION PROBLEMS FOR SYSTEMS OF FORMS AND LINEAR MAPPINGS , 1988 .

[10]  Froilán M. Dopico,et al.  The solution of the equation XA + AXT = 0 and its application to the theory of orbits , 2011 .

[11]  Alan Edelman,et al.  The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .

[12]  H. Power,et al.  A note on the matrix equation A' LA-L = -K , 1969 .

[13]  Kuan-Yue Wang,et al.  A Matrix Equation , 1991, Econometric Theory.

[14]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[15]  Daniel Kressner,et al.  Structured Condition Numbers for Invariant Subspaces , 2006, SIAM J. Matrix Anal. Appl..

[16]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[17]  Henry E. Fettis,et al.  Note on the matrix equation Ax = λBx , 1965, Comput. J..