Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2

Abstract We report electrochemical studies of high voltage cathodes composed of lithium rich “layered-layered” material having the nominal composition Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 , or equivalently 0.6Li[Li 1/3 Mn 2/3 ]O 2 –0.4Li[Mn 0.3 Ni 0.45 Co 0.25 ]O 2 . These aspects were investigated by cyclic voltammetry studies in conjunction with electrochemical impedance spectroscopy measurements to understand the redox reactions involving multiple transition metals and their capacity contribution at higher voltages, up to 4.9 V. Further, cathodes with 1.5 wt.% carbon nanofibers added to the Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 composite electrode showed stable reversible capacities of about 280 mAh g −1 when cycled to 4.9 V for more than 100 cycles, and almost a factor of two improvements in the rate performance compared to the electrode composition prepared using conventional composition (7.5% carbon black and 7.5% binder).

[1]  Doron Aurbach,et al.  LiMn(0.8)Fe(0.2)PO(4): an advanced cathode material for rechargeable lithium batteries. , 2009, Angewandte Chemie.

[2]  Doron Aurbach,et al.  A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2. LiNi0.33Mn0.33Co0.33O2. and LiNi0.40Mn0.40Co0.20O2 layered compounds , 2009 .

[3]  A. Manthiram,et al.  High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability , 2009 .

[4]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[5]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[6]  J. Gim,et al.  Synthesis of xLi2MnO3·(1 − x)LiMO2 (M = Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties , 2010 .

[7]  S. Yamanaka,et al.  Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3 , 1999 .

[8]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[9]  K. Nahm,et al.  Design and analysis of triangle phase diagram for preparation of new lithium manganese oxide solid solutions with stable layered crystal structure , 2005 .

[10]  F. Tuinstra,et al.  Characterization of Graphite Fiber Surfaces with Raman Spectroscopy , 1970 .

[11]  Y. Park,et al.  Electrochemical behaviors of Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathode series (0 < x < 1) synthesized by sucrose combustion process for high capacity lithium ion batteries , 2008 .

[12]  Y. Park,et al.  Charge/discharge behavior of Li[Ni0.20Li0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries , 2005 .

[13]  Alain Mauger,et al.  Minimization of the cation mixing in Li1+x(NMC)1-xO2 as cathode material , 2010 .

[14]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[15]  Christopher S. Johnson,et al.  Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries , 2007 .

[16]  Manabu Watanabe,et al.  Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 , 2010 .

[17]  B. Reeja‐Jayan,et al.  Conductive Surface Modification with Aluminum of High Capacity Layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathodes , 2010 .

[18]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[19]  Martin Winter,et al.  Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability , 2011 .

[20]  A. Manthiram,et al.  Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode , 2010 .

[21]  Christopher S. Johnson,et al.  Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries , 2005 .

[22]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[23]  Christopher S. Johnson,et al.  Layered xLiMO2.(1 - x)Li2M'O3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2.0.05Li2TiO3 , 2002 .

[24]  Jaehoon Kim,et al.  Electrochemical performance of Li[LixNi(1−3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol–gel method , 2003 .

[25]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[26]  Doron Aurbach,et al.  Synthesis of Integrated Cathode Materials xLi2MnO3⋅ ( 1 − x ) LiMn1 / 3Ni1 / 3Co1 / 3O2 ( x = 0.3 , 0.5 , 0.7 ) and Studies of Their Electrochemical Behavior , 2010 .

[27]  Wenquan Lu,et al.  Study of Li1+x(Mn4/9Co1/9Ni4/9)1-xO2 Cathode Materials for Vehicle Battery Applications , 2011 .

[28]  Christopher S. Johnson,et al.  Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion Batteries , 2009 .

[29]  K. Amine,et al.  Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤x≤ 0.5) , 2007 .

[30]  P. Whitfield,et al.  Effects of synthesis on electrochemical, structural and physical properties of solution phases of Li , 2005 .

[31]  T. Sasaki,et al.  Synthesis and electrochemistry of layered 0.6LiNi0.5Mn0.5O2·xLi2MnO3·yLiCoO2 (x+y=0.4) cathode materials , 2004 .

[32]  Y. Park,et al.  Structural and electrochemical properties of Li[CoxLi(1/3−x/3)Mn(2/3−2x/3)]O2 cathode materials , 2004 .

[33]  Jun Liu,et al.  Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes , 2010 .

[34]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[35]  D. Aurbach,et al.  On the Performance of LiNi1 / 3Mn1 / 3Co1 / 3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries , 2009 .