Pareto Optimization of Energy Absorption of Square Aluminium Columns Using Multi-Objective Genetic Algorithms

Abstract Multi-objective genetic algorithms (GAs) are used for Pareto-approach optimization of the energy absorption of square aluminium columns both with and without aluminium foam filler. In this way, a new diversity-preserving algorithm is proposed to enhance the performance of multi-objective evolutionary algorithms (MOEAs). The important conflicting energy-absorption objectives that have been considered in this work are weight and absorbed energy. The multi-objective optimization is considered for two different cases of energy absorption, namely, non-filled and foam filled. It is also demonstrated that the results of two-objective optimization include those of single-objective optimization and, therefore, provide more choices for optimal design of energy absorption for square aluminium columns with and without aluminium foam filler. Using the obtained Pareto front, it is further found that non-filled columns are preferred over foam-filled ones when the desired energy absorption is no more than 4.8 kJ for square aluminium columns.

[1]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[2]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[3]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[4]  Odd Sture Hopperstad,et al.  Crash behaviour of thin-walled aluminium members , 1998 .

[5]  Ernesto Benini,et al.  Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms , 2003, Evolutionary Computation.

[6]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Ali Akbar Jamali,et al.  Inverse modelling of multi-objective thermodynamically optimized turbojet engines using GMDH-type neural networks and evolutionary algorithms , 2005 .

[9]  Norman Jones,et al.  Dynamic axial crushing of circular tubes , 1984 .

[10]  O. Hopperstad,et al.  Optimum design for energy absorption of square aluminium columns with aluminium foam filler , 2001 .

[11]  Andrzej Osyczka,et al.  7 – Multicriteria optimization for engineering design , 1985 .

[12]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using a cultural algorithm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[13]  Alan D. Christiansen,et al.  Multiobjective optimization of trusses using genetic algorithms , 2000 .

[14]  Andrzej Ameljańczyk,et al.  Multicriteria Optimization in Engineering Design , 1994 .

[15]  Stephen R Reid,et al.  METAL TUBES AS IMPACT ENERGY ABSORBERS , 1985 .

[16]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[17]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[18]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  T. Wierzbicki,et al.  On the Crushing Mechanics of Thin-Walled Structures , 1983 .

[22]  M. Langseth,et al.  Static crushing of square aluminium extrusions with aluminium foam filler , 1999 .

[23]  Makoto Ohsaki,et al.  Design sensitivity analysis of elastoplastic structures , 1994 .

[24]  K.R.F. Andrews,et al.  Classification of the axial collapse of cylindrical tubes under quasi-static loading , 1983 .

[25]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[26]  R. Lust,et al.  Structural optimization with crashworthiness constraints , 1992 .

[27]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[28]  Anikó Ekárt,et al.  Genetic algorithms in computer aided design , 2003, Comput. Aided Des..

[29]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .