A genetically encoded fluorescent biosensor for extracellular l-lactate

[1]  J. Zhu,et al.  A genetically encoded sensor for measuring serotonin dynamics , 2021, Nature Neuroscience.

[2]  R. Campbell,et al.  Structure- and mechanism-guided design of single fluorescent protein-based biosensors , 2021, Nature Chemical Biology.

[3]  D. E. Olson,et al.  Psychedelic-inspired drug discovery using an engineered biosensor , 2020, Cell.

[4]  Elizabeth K. Unger,et al.  Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning , 2020, Cell.

[5]  T. Ishihara,et al.  Green fluorescent protein-based lactate and pyruvate indicators suitable for biochemical assays and live cell imaging , 2020, Scientific Reports.

[6]  J. Rabinowitz,et al.  Lactate: the ugly duckling of energy metabolism , 2020, Nature Metabolism.

[7]  Roger J. Thompson,et al.  Stress gates an astrocytic energy reservoir to impair synaptic plasticity , 2020, Nature Communications.

[8]  Amol V. Shivange,et al.  A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies , 2020, bioRxiv.

[9]  Bruno Weber,et al.  Arousal-induced cortical activity triggers lactate release from astrocytes , 2020, Nature Metabolism.

[10]  M. Drobizhev,et al.  Characterizing the Two-photon Absorption Properties of Fluorescent Molecules in the 680–1300 nm Spectral Range , 2020, Bio-protocol.

[11]  L. Saksida,et al.  An optimized acetylcholine sensor for monitoring in vivo cholinergic activity , 2019, bioRxiv.

[12]  Fred A. Hamprecht,et al.  ilastik: interactive machine learning for (bio)image analysis , 2019, Nature Methods.

[13]  Bernhard X. Kausler,et al.  ilastik: interactive machine learning for (bio)image analysis , 2019, Nature Methods.

[14]  M. Drobizhev,et al.  Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators , 2019, Biophysical journal.

[15]  Eric C Greenwald,et al.  Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. , 2018, Chemical reviews.

[16]  Dayu Lin,et al.  A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine , 2018, Neuron.

[17]  G. Yellen Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism , 2018, The Journal of cell biology.

[18]  A. Nimmerjahn,et al.  Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors , 2018, Science.

[19]  Anatol C. Kreitzer,et al.  A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice , 2018, Cell.

[20]  Takashi Kawashima,et al.  A genetically encoded fluorescent sensor for in vivo imaging of GABA , 2018, Nature Methods.

[21]  Pierre J. Magistretti,et al.  Lactate in the brain: from metabolic end-product to signalling molecule , 2018, Nature Reviews Neuroscience.

[22]  L. Gladden,et al.  Lactate metabolism: historical context, prior misinterpretations, and current understanding , 2018, European Journal of Applied Physiology.

[23]  M. Drobizhev,et al.  Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation , 2017, The journal of physical chemistry letters.

[24]  Mikhail Drobizhev,et al.  Deciphering the molecular mechanism responsible for GCaMP6m's Ca2+-dependent change in fluorescence , 2017, PloS one.

[25]  A. Schlessinger,et al.  Mutations in the Na+/Citrate Cotransporter NaCT (SLC13A5) in Pediatric Patients with Epilepsy and Developmental Delay , 2016, Molecular medicine.

[26]  Zeno Lavagnino,et al.  Quantitative Assessment of Fluorescent Proteins , 2016, Nature Methods.

[27]  A. Rebane,et al.  High-accuracy reference standards for two-photon absorption in the 680-1050 nm wavelength range. , 2016, Optics express.

[28]  David G. Rosenegger,et al.  A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable , 2014, PloS one.

[29]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[30]  Alejandro San Martín,et al.  A Genetically Encoded FRET Lactate Sensor and Its Use To Detect the Warburg Effect in Single Cancer Cells , 2013, PloS one.

[31]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[32]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[33]  J. Perry,et al.  Rapid, broadband two-photon-excited fluorescence spectroscopy and its application to red-emitting secondary reference compounds , 2011 .

[34]  M. Drobizhev,et al.  Two-photon absorption properties of fluorescent proteins , 2011, Nature Methods.

[35]  K. Belfield,et al.  Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer. , 2009, Optics express.

[36]  Nobuhiko Akiyama,et al.  Crystal structure of a periplasmic substrate-binding protein in complex with calcium lactate. , 2009, Journal of molecular biology.

[37]  M. Drobizhev,et al.  Two-photon absorption standards in the 550-1600 nm excitation wavelength range. , 2008, Optics express.

[38]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[39]  G. Zello,et al.  D-lactate in human and ruminant metabolism. , 2005, The Journal of nutrition.

[40]  V. Routh,et al.  Glucose-sensing neurons Are they physiologically relevant? , 2002, Physiology & Behavior.

[41]  W. Webb,et al.  Two-Photon Fluorescence Excitation Cross Sections of Biomolecular Probes from 690 to 960 nm. , 1998, Applied optics.

[42]  S. Boxer,et al.  Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Webb,et al.  Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm , 1996 .

[44]  K. D. Hardman,et al.  An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. , 1993, Protein engineering.

[45]  J. Ducuing,et al.  Dispersion of the two-photon cross section in rhodamine dyes , 1972 .

[46]  Shuce Zhang,et al.  Fluorescence-Based Ratiometric Measurement of CRAC Channel Activity in STIM-Orai-Overexpressing HEK-293 Cells. , 2018, Methods in molecular biology.

[47]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .