Synthesis, Reactivity, and Properties of Benz[a]azulenes via the [8 + 2] Cycloaddition of 2H-Cyclohepta[b]furan-2-ones with an Enamine.

Starting with the reaction of 2H-cyclohepta[b]furan-2-ones with an enamine, which was prepared from 4-tert-butylcyclohexanone and pyrrolidine, benz[a]azulenes having both formyl and tert-butyl groups were obtained in the three-step sequence. Subsequently, both the formyl and tert-butyl groups were eliminated by heating the benz[a]azulene derivatives in 100% H3PO4 to give benz[a]azulenes without these substituents in high yields. In terms of product yield, this method is the best one ever reported for the synthesis of the parent benz[a]azulene so far. The conversion of the benz[a]azulene derivatives with a formyl group into cyclohept[a]acenaphthylen-3-one derivatives was also investigated via Knoevenagel condensation with dimethyl malonate, followed by Brønsted acid-mediated intramolecular cyclization. The structural features including the bond alternation in the benz[a]azulene derivatives were revealed by NMR studies, NICS calculations, and a single-crystal X-ray structural analysis. The optical and electrochemical properties of a series of benz[a]azulene derivatives were evaluated by UV/Vis, fluorescence spectroscopy, and voltammetry experiments. As a result, we found that some benz[a]azulene derivatives showed remarkable luminescence in acidic media. In addition, the benz[a]azulene derivatives with the electron-withdrawing group and cyclohept[a]acenaphthylen-3-one derivative displayed good reversibility in the spectral changes under the electrochemical redox conditions.

[1]  K. Ghiggino,et al.  Photophysics and spectroscopy of 1,2-Benzazulene , 2021, Chemical Physics Letters.

[2]  Yogesh Kumar Maurya,et al.  Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds , 2021, Chemical reviews.

[3]  Taku Shoji,et al.  Synthesis of Azulene Derivatives from 2H-Cyclohepta[b]furan-2-ones as Starting Materials: Their Reactivity and Properties , 2021, International journal of molecular sciences.

[4]  P. Murugan,et al.  Azulene Bridged π-Distorted Chromophores: The Influence of Structural Symmetry on Optoelectrochemical and Photovoltaic Parameters. , 2021, ChemPlusChem.

[5]  Youqi Zhu,et al.  Marked effects of azulenyl vs. naphthyl groups on donor-π-acceptor-π-donor small molecules for organic photovoltaic cells , 2021 .

[6]  T. Okujima,et al.  Development of Heterocycle-Substituted and Fused Azulenes in the Last Decade (2010–2020) , 2020, International journal of molecular sciences.

[7]  Catherine L. Lyall,et al.  Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy , 2019, Journal of the American Chemical Society.

[8]  J. Crassous,et al.  Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). , 2019, Chemical reviews.

[9]  S. Yamaguchi,et al.  Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems. , 2019, Chemical reviews.

[10]  P. Cameron,et al.  Azulene – Thiophene – Cyanoacrylic acid dyes with donor-π-acceptor structures. Synthesis, characterisation and evaluation in dye-sensitized solar cells , 2018 .

[11]  Taku Shoji,et al.  Azulene-Based Donor-Acceptor Systems: Synthesis, Optical, and Electrochemical Properties. , 2017, Chemistry.

[12]  K. Edler,et al.  Azulene-boronate esters: colorimetric indicators for fluoride in drinking water. , 2017, Chemical communications.

[13]  K. Takai,et al.  Azulene-Fused Linear Polycyclic Aromatic Hydrocarbons with Small Bandgap, High Stability, and Reversible Stimuli Responsiveness. , 2017, Organic letters.

[14]  H. Ågren,et al.  Selective Dual-Channel Imaging on Cyanostyryl-Modified Azulene Systems with Unimolecularly Tunable Visible-Near Infrared Luminescence. , 2017, Chemistry.

[15]  Youqi Zhu,et al.  An Azulene-Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Open-Circuit Voltage. , 2016, Chemistry.

[16]  Y. Yamaguchi,et al.  Terazulene Isomers: Polarity Change of OFETs through Molecular Orbital Distribution Contrast. , 2016, Journal of the American Chemical Society.

[17]  Y. Murata,et al.  Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[18]  Deqing Zhang,et al.  Tuning the Semiconducting Behaviors of New Alternating Dithienyldiketopyrrolopyrrole–Azulene Conjugated Polymers by Varying the Linking Positions of Azulene , 2015 .

[19]  Takashi Kubo,et al.  Phenalenyl-based open-shell polycyclic aromatic hydrocarbons. , 2015, Chemical record.

[20]  C. Hawker,et al.  Modulating structure and properties in organic chromophores: influence of azulene as a building block , 2014 .

[21]  T. Emrick,et al.  Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. , 2014, Journal of the American Chemical Society.

[22]  Y. Yamaguchi,et al.  Terazulene: a high-performance n-type organic field-effect transistor based on molecular orbital distribution control. , 2013, Journal of the American Chemical Society.

[23]  H. Hopf Pentalenes--from highly reactive antiaromatics to substrates for material science. , 2013, Angewandte Chemie.

[24]  Atsushi Noda,et al.  Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: discovery of YM543. , 2013, Bioorganic & medicinal chemistry.

[25]  Jishan Wu,et al.  Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. , 2012, Chemical Society reviews.

[26]  Y. Yamaguchi,et al.  Synthesis, properties, and OFET characteristics of 5,5'-di(2-azulenyl)-2,2'-bithiophene (DAzBT) and 2,5-di(2-azulenyl)-thieno[3,2-b]thiophene (DAzTT). , 2012, Organic letters.

[27]  O. Blacque,et al.  Syntheses and tunable emission properties of 2-alkynyl azulenes. , 2012, Organic letters.

[28]  Taku Shoji,et al.  Recent Advances in the Developmentof Methods for the Preparation of Functionalized Azulenes for ElectrochromicApplications , 2011 .

[29]  Roey J. Amir,et al.  Stimuli-responsive azulene-based conjugated oligomers with polyaniline-like properties. , 2011, Journal of the American Chemical Society.

[30]  G. Fischer Azulenes Fused to Heterocycles , 2009 .

[31]  S. Ito,et al.  Creation of Stabilized Electrochromic Materials by Taking Advantage of Azulene Skeletons , 2009 .

[32]  Taku Shoji,et al.  Synthesis and Redox Behavior of 1-Azulenyl Sulfides and Efficient Synthesis of 1,1′-Biazulenes , 2008 .

[33]  Taku Shoji,et al.  Synthesis, stabilities, and redox behavior of mono-, di-, and tetracations composed of di(1-azulenyl)methylium units connected to a benzene ring by phenyl- and 2-thienylacetylene spacers. A concept of a cyanine-cyanine hybrid as a stabilized electrochromic system. , 2007, The Journal of organic chemistry.

[34]  S. Ito,et al.  Synthesis, stabilities, and redox behavior of Di(1-azulenyl)(6-azulenyl)methylium hexafluorophosphates. Generation of a donor-acceptor-substituted neutral radical by azulenes. , 2003, The Journal of organic chemistry.

[35]  Hirokazu Kobayashi,et al.  Synthesis and two-electron redox behavior of diazuleno[2,1-a:1,2-c]naphthalenes. , 2002, The Journal of organic chemistry.

[36]  M. Hashimoto,et al.  Crystal Structure of 1,1,1-Triphenyl-4-(10-benz[a]azulenyl)-3,4-buten-2-one , 2002, Analytical Sciences.

[37]  K. Hara,et al.  Synthesis of benzocyclobutadiene trimers and all-Z-tribenzo[12]annulene. A new family of concave π-systems , 2001 .

[38]  Minyung Lee,et al.  Fluorescence quenching dynamics of azulene and 2-haloazulenes by CCl4 in nonpolar solvents , 2000 .

[39]  E. Riedle,et al.  Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion , 1999 .

[40]  H. Yamaguchi,et al.  Anomalous fluorescence spectra of benz[a]azulene derivatives , 1997 .

[41]  D. Nanz,et al.  An Analysis of the Bonding Properties of Benz[a]azulene by X‐Ray, NMR, and Computational Studies , 1996 .

[42]  David Sperandio,et al.  An Efficient Straightforward Synthesis of Benz[a]azulene , 1995 .

[43]  Masaaki Yoshida,et al.  Electrophilic substitution reactions of benz[a]indeno[1,2,3-cd]azulene , 1990 .

[44]  F. Texier-Boullet,et al.  KNOEVENAGEL CONDENSATION CATALYZED BY ALUMINUM OXIDE , 1983 .

[45]  A. Gupta,et al.  Theoretical Studies of Some Nonbenzenoid Hydrocarbons. V. Benzazulenes and Benzofluoranthenes , 1979 .

[46]  J. Michl,et al.  Magnetic circular dichroism of cyclic .pi.-electron systems. 15. Benzazulenes , 1978 .

[47]  K. Takase,et al.  THE NOVEL OXIDATION OF 1-ALKYLAZULENES TO 1-ACYLAZULENES WITH DDQ , 1977 .

[48]  Kagetoshi Yamamoto,et al.  THE CYCLOHEPT(A)ACENAPHTHYLENYLIUM ION , 1976 .

[49]  K. Hafner,et al.  CYCLOADDITION REACTIONS OF ACEHEPTYLENE‐A SIMPLE SYNTHESIS OF DICYCLOPENT(EF,K1)HEPTALENES , 1976 .

[50]  Kagetoshi Yamamoto,et al.  Das Cyclohept[a]acenaphthylenylium‐Ion , 1976 .

[51]  K. Hafner,et al.  Cycloadditionsreaktionen des Aceheptylens - Eine einfache Synthese von Dicyclopent[ef,kl]heptalenen† , 1976 .

[52]  C. Jutz,et al.  Darstellung von Benzazulenen aus Azulenderivaten , 1974 .

[53]  C. Jutz,et al.  Simple Synthesis of Pyraceheptylene and Benzo[a]pyraceheptylene , 1971 .

[54]  K. Takase,et al.  The Synthesis of 1-Phenylazulene and 2-Phenylazulene from the Troponoid Compound , 1971 .

[55]  P. Fryer,et al.  Use of the molecular orbital theory of charge transfer spectra in searching for multiple charge transfer bands of the Pi complexes of 2,3-dichloro-5,6-dicyano-p-benzoquinone , 1970 .

[56]  E. Heilbronner,et al.  On the fluorescence anomaly of azulene , 1967 .

[57]  K. Takase,et al.  The Anionoid Substitution Reaction of Diethyl 6-Bromoazulene-1,3-dicarboxylate , 1965 .

[58]  K. Takase,et al.  The Synthesis of 5- and 6-Acetylazulene Derivatives , 1963 .

[59]  W. Treibs,et al.  Über bi‐ und polycyclische Azulene. IL. Heterocyclisch anellierte Azazulene , 1961 .

[60]  Andor Furst,et al.  Zur Kenntnis der Sesquiterpene. (79. Mitteilung). Im Fünfring mehrfach substituierte Azulene , 1947 .

[61]  Andor Furst,et al.  Zur Kenntnis der Sesquiterpene. 78. Mitteilung. Die spektroskopische Prüfung verschiedener Präparate von 5‐Methyl‐azulen , 1947 .

[62]  P. Plattner,et al.  Zur Kenntnis der Sesquiterpene. (76. Mitteilung). Die Absorptionskurven des Azulens und der fünf Monomethyl-azulene im sichtbaren Bereich , 1947 .

[63]  P. Plattner,et al.  Zur Kenntnis der Sesquiterpene. (58. Mitteilung). 4,8‐Dimethyl‐6‐isopropyl‐azulen , 1943 .

[64]  Taku Shoji,et al.  The Preparation and Properties of Heteroarylazulenes and Hetero-Fused Azulenes , 2018 .

[65]  Cesare Soci,et al.  Perovskite Solar Cells , 2016 .

[66]  Klaus Müllen,et al.  Polyphenylene Nanostructures. , 1999, Chemical reviews.

[67]  W. Schmidt,et al.  Photoelectron spectra of benzazulenes , 1987 .

[68]  D. Wege,et al.  The addition of benzyne to azulene , 1986 .

[69]  M. Oda,et al.  Generation and notable position dependent electrocyclization of cycloheptatrienylphenylcarbonium ions ― electrocyclization of a norcaradiene , 1984 .

[70]  M. Fukuda,et al.  Magnetic circular dichroism and anomalous fluorescence spectra of benz[a]azulene and naphth[2,1-a]azulene , 1980 .

[71]  D. Wege,et al.  The addition of benzocyclobutenylidene to benzene. A novel route to benz[a]azclene. , 1978 .

[72]  E. C. Kirby,et al.  102. Conjugated cyclic hydrocarbons and their heterocyclic analogues. Part II. The condensation of azulenes with homocyclic and heterocyclic aromatic aldehydes in the presence of perchloric acid , 1960 .

[73]  W. Stafford,et al.  219. The azulene series. Part III. The synthesis and properties of 3-benzylideneguaiazulenium chloride , 1958 .

[74]  W. Treibs Über bi‐ und polycyclische Azulene, I. Mitteil.: Synthese des 1.2‐Benz‐azulens , 1948 .

[75]  A. Furst,et al.  Knowing the Sesquiterpenes; 1,2-benz azulene. , 1948 .

[76]  Andor Furst,et al.  Zur Kenntnis der Sesquiterpene. (66. Mitteilung). Über den Einfluss der Substitution auf die Farbe der Azulene; 2-Äthyl-azulen , 1945 .

[77]  H. Schmid,et al.  Zur Kenntnis der Sesquiterpene. (67. Mitteilung). Über den Einfluss der Substitution auf die Farbe der Azulene; 1,3,4,8‐Tetramethyl‐azulen , 1945 .

[78]  P. Plattner,et al.  Zur Kenntnis der flüchtigen Pflanzenstoffe V. Über die Darstellung des Grundkörpers der Azulen‐Reihe , 1937 .