Synthesis, Reactivity, and Properties of Benz[a]azulenes via the [8 + 2] Cycloaddition of 2H-Cyclohepta[b]furan-2-ones with an Enamine.
暂无分享,去创建一个
R. Katoh | T. Okujima | Taku Shoji | Akari Yamazaki | Rina Sakai | M. Yasunami | S. Ito | Konomi Shimamura
[1] K. Ghiggino,et al. Photophysics and spectroscopy of 1,2-Benzazulene , 2021, Chemical Physics Letters.
[2] Yogesh Kumar Maurya,et al. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds , 2021, Chemical reviews.
[3] Taku Shoji,et al. Synthesis of Azulene Derivatives from 2H-Cyclohepta[b]furan-2-ones as Starting Materials: Their Reactivity and Properties , 2021, International journal of molecular sciences.
[4] P. Murugan,et al. Azulene Bridged π-Distorted Chromophores: The Influence of Structural Symmetry on Optoelectrochemical and Photovoltaic Parameters. , 2021, ChemPlusChem.
[5] Youqi Zhu,et al. Marked effects of azulenyl vs. naphthyl groups on donor-π-acceptor-π-donor small molecules for organic photovoltaic cells , 2021 .
[6] T. Okujima,et al. Development of Heterocycle-Substituted and Fused Azulenes in the Last Decade (2010–2020) , 2020, International journal of molecular sciences.
[7] Catherine L. Lyall,et al. Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy , 2019, Journal of the American Chemical Society.
[8] J. Crassous,et al. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). , 2019, Chemical reviews.
[9] S. Yamaguchi,et al. Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems. , 2019, Chemical reviews.
[10] P. Cameron,et al. Azulene – Thiophene – Cyanoacrylic acid dyes with donor-π-acceptor structures. Synthesis, characterisation and evaluation in dye-sensitized solar cells , 2018 .
[11] Taku Shoji,et al. Azulene-Based Donor-Acceptor Systems: Synthesis, Optical, and Electrochemical Properties. , 2017, Chemistry.
[12] K. Edler,et al. Azulene-boronate esters: colorimetric indicators for fluoride in drinking water. , 2017, Chemical communications.
[13] K. Takai,et al. Azulene-Fused Linear Polycyclic Aromatic Hydrocarbons with Small Bandgap, High Stability, and Reversible Stimuli Responsiveness. , 2017, Organic letters.
[14] H. Ågren,et al. Selective Dual-Channel Imaging on Cyanostyryl-Modified Azulene Systems with Unimolecularly Tunable Visible-Near Infrared Luminescence. , 2017, Chemistry.
[15] Youqi Zhu,et al. An Azulene-Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Open-Circuit Voltage. , 2016, Chemistry.
[16] Y. Yamaguchi,et al. Terazulene Isomers: Polarity Change of OFETs through Molecular Orbital Distribution Contrast. , 2016, Journal of the American Chemical Society.
[17] Y. Murata,et al. Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.
[18] Deqing Zhang,et al. Tuning the Semiconducting Behaviors of New Alternating Dithienyldiketopyrrolopyrrole–Azulene Conjugated Polymers by Varying the Linking Positions of Azulene , 2015 .
[19] Takashi Kubo,et al. Phenalenyl-based open-shell polycyclic aromatic hydrocarbons. , 2015, Chemical record.
[20] C. Hawker,et al. Modulating structure and properties in organic chromophores: influence of azulene as a building block , 2014 .
[21] T. Emrick,et al. Azulene methacrylate polymers: synthesis, electronic properties, and solar cell fabrication. , 2014, Journal of the American Chemical Society.
[22] Y. Yamaguchi,et al. Terazulene: a high-performance n-type organic field-effect transistor based on molecular orbital distribution control. , 2013, Journal of the American Chemical Society.
[23] H. Hopf. Pentalenes--from highly reactive antiaromatics to substrates for material science. , 2013, Angewandte Chemie.
[24] Atsushi Noda,et al. Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: discovery of YM543. , 2013, Bioorganic & medicinal chemistry.
[25] Jishan Wu,et al. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. , 2012, Chemical Society reviews.
[26] Y. Yamaguchi,et al. Synthesis, properties, and OFET characteristics of 5,5'-di(2-azulenyl)-2,2'-bithiophene (DAzBT) and 2,5-di(2-azulenyl)-thieno[3,2-b]thiophene (DAzTT). , 2012, Organic letters.
[27] O. Blacque,et al. Syntheses and tunable emission properties of 2-alkynyl azulenes. , 2012, Organic letters.
[28] Taku Shoji,et al. Recent Advances in the Developmentof Methods for the Preparation of Functionalized Azulenes for ElectrochromicApplications , 2011 .
[29] Roey J. Amir,et al. Stimuli-responsive azulene-based conjugated oligomers with polyaniline-like properties. , 2011, Journal of the American Chemical Society.
[30] G. Fischer. Azulenes Fused to Heterocycles , 2009 .
[31] S. Ito,et al. Creation of Stabilized Electrochromic Materials by Taking Advantage of Azulene Skeletons , 2009 .
[32] Taku Shoji,et al. Synthesis and Redox Behavior of 1-Azulenyl Sulfides and Efficient Synthesis of 1,1′-Biazulenes , 2008 .
[33] Taku Shoji,et al. Synthesis, stabilities, and redox behavior of mono-, di-, and tetracations composed of di(1-azulenyl)methylium units connected to a benzene ring by phenyl- and 2-thienylacetylene spacers. A concept of a cyanine-cyanine hybrid as a stabilized electrochromic system. , 2007, The Journal of organic chemistry.
[34] S. Ito,et al. Synthesis, stabilities, and redox behavior of Di(1-azulenyl)(6-azulenyl)methylium hexafluorophosphates. Generation of a donor-acceptor-substituted neutral radical by azulenes. , 2003, The Journal of organic chemistry.
[35] Hirokazu Kobayashi,et al. Synthesis and two-electron redox behavior of diazuleno[2,1-a:1,2-c]naphthalenes. , 2002, The Journal of organic chemistry.
[36] M. Hashimoto,et al. Crystal Structure of 1,1,1-Triphenyl-4-(10-benz[a]azulenyl)-3,4-buten-2-one , 2002, Analytical Sciences.
[37] K. Hara,et al. Synthesis of benzocyclobutadiene trimers and all-Z-tribenzo[12]annulene. A new family of concave π-systems , 2001 .
[38] Minyung Lee,et al. Fluorescence quenching dynamics of azulene and 2-haloazulenes by CCl4 in nonpolar solvents , 2000 .
[39] E. Riedle,et al. Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion , 1999 .
[40] H. Yamaguchi,et al. Anomalous fluorescence spectra of benz[a]azulene derivatives , 1997 .
[41] D. Nanz,et al. An Analysis of the Bonding Properties of Benz[a]azulene by X‐Ray, NMR, and Computational Studies , 1996 .
[42] David Sperandio,et al. An Efficient Straightforward Synthesis of Benz[a]azulene , 1995 .
[43] Masaaki Yoshida,et al. Electrophilic substitution reactions of benz[a]indeno[1,2,3-cd]azulene , 1990 .
[44] F. Texier-Boullet,et al. KNOEVENAGEL CONDENSATION CATALYZED BY ALUMINUM OXIDE , 1983 .
[45] A. Gupta,et al. Theoretical Studies of Some Nonbenzenoid Hydrocarbons. V. Benzazulenes and Benzofluoranthenes , 1979 .
[46] J. Michl,et al. Magnetic circular dichroism of cyclic .pi.-electron systems. 15. Benzazulenes , 1978 .
[47] K. Takase,et al. THE NOVEL OXIDATION OF 1-ALKYLAZULENES TO 1-ACYLAZULENES WITH DDQ , 1977 .
[48] Kagetoshi Yamamoto,et al. THE CYCLOHEPT(A)ACENAPHTHYLENYLIUM ION , 1976 .
[49] K. Hafner,et al. CYCLOADDITION REACTIONS OF ACEHEPTYLENE‐A SIMPLE SYNTHESIS OF DICYCLOPENT(EF,K1)HEPTALENES , 1976 .
[50] Kagetoshi Yamamoto,et al. Das Cyclohept[a]acenaphthylenylium‐Ion , 1976 .
[51] K. Hafner,et al. Cycloadditionsreaktionen des Aceheptylens - Eine einfache Synthese von Dicyclopent[ef,kl]heptalenen† , 1976 .
[52] C. Jutz,et al. Darstellung von Benzazulenen aus Azulenderivaten , 1974 .
[53] C. Jutz,et al. Simple Synthesis of Pyraceheptylene and Benzo[a]pyraceheptylene , 1971 .
[54] K. Takase,et al. The Synthesis of 1-Phenylazulene and 2-Phenylazulene from the Troponoid Compound , 1971 .
[55] P. Fryer,et al. Use of the molecular orbital theory of charge transfer spectra in searching for multiple charge transfer bands of the Pi complexes of 2,3-dichloro-5,6-dicyano-p-benzoquinone , 1970 .
[56] E. Heilbronner,et al. On the fluorescence anomaly of azulene , 1967 .
[57] K. Takase,et al. The Anionoid Substitution Reaction of Diethyl 6-Bromoazulene-1,3-dicarboxylate , 1965 .
[58] K. Takase,et al. The Synthesis of 5- and 6-Acetylazulene Derivatives , 1963 .
[59] W. Treibs,et al. Über bi‐ und polycyclische Azulene. IL. Heterocyclisch anellierte Azazulene , 1961 .
[60] Andor Furst,et al. Zur Kenntnis der Sesquiterpene. (79. Mitteilung). Im Fünfring mehrfach substituierte Azulene , 1947 .
[61] Andor Furst,et al. Zur Kenntnis der Sesquiterpene. 78. Mitteilung. Die spektroskopische Prüfung verschiedener Präparate von 5‐Methyl‐azulen , 1947 .
[62] P. Plattner,et al. Zur Kenntnis der Sesquiterpene. (76. Mitteilung). Die Absorptionskurven des Azulens und der fünf Monomethyl-azulene im sichtbaren Bereich , 1947 .
[63] P. Plattner,et al. Zur Kenntnis der Sesquiterpene. (58. Mitteilung). 4,8‐Dimethyl‐6‐isopropyl‐azulen , 1943 .
[64] Taku Shoji,et al. The Preparation and Properties of Heteroarylazulenes and Hetero-Fused Azulenes , 2018 .
[65] Cesare Soci,et al. Perovskite Solar Cells , 2016 .
[66] Klaus Müllen,et al. Polyphenylene Nanostructures. , 1999, Chemical reviews.
[67] W. Schmidt,et al. Photoelectron spectra of benzazulenes , 1987 .
[68] D. Wege,et al. The addition of benzyne to azulene , 1986 .
[69] M. Oda,et al. Generation and notable position dependent electrocyclization of cycloheptatrienylphenylcarbonium ions ― electrocyclization of a norcaradiene , 1984 .
[70] M. Fukuda,et al. Magnetic circular dichroism and anomalous fluorescence spectra of benz[a]azulene and naphth[2,1-a]azulene , 1980 .
[71] D. Wege,et al. The addition of benzocyclobutenylidene to benzene. A novel route to benz[a]azclene. , 1978 .
[72] E. C. Kirby,et al. 102. Conjugated cyclic hydrocarbons and their heterocyclic analogues. Part II. The condensation of azulenes with homocyclic and heterocyclic aromatic aldehydes in the presence of perchloric acid , 1960 .
[73] W. Stafford,et al. 219. The azulene series. Part III. The synthesis and properties of 3-benzylideneguaiazulenium chloride , 1958 .
[74] W. Treibs. Über bi‐ und polycyclische Azulene, I. Mitteil.: Synthese des 1.2‐Benz‐azulens , 1948 .
[75] A. Furst,et al. Knowing the Sesquiterpenes; 1,2-benz azulene. , 1948 .
[76] Andor Furst,et al. Zur Kenntnis der Sesquiterpene. (66. Mitteilung). Über den Einfluss der Substitution auf die Farbe der Azulene; 2-Äthyl-azulen , 1945 .
[77] H. Schmid,et al. Zur Kenntnis der Sesquiterpene. (67. Mitteilung). Über den Einfluss der Substitution auf die Farbe der Azulene; 1,3,4,8‐Tetramethyl‐azulen , 1945 .
[78] P. Plattner,et al. Zur Kenntnis der flüchtigen Pflanzenstoffe V. Über die Darstellung des Grundkörpers der Azulen‐Reihe , 1937 .