Complexity of evolutionary equilibria in static fitness landscapes

Experiments show that fitness landscapes can have a rich combinatorial structure due to epistasis and yet theory assumes that local peaks can be reached quickly. I introduce a distinction between easy landscapes where local fitness peaks can be found in a moderate number of steps and hard landscapes where finding evolutionary equilibria requires an infeasible amount of time. Hard examples exist even among landscapes with no reciprocal sign epistasis; on these, strong selection weak mutation dynamics cannot find the unique peak in polynomial time. On hard rugged fitness landscapes, no evolutionary dynamics -- even ones that do not follow adaptive paths -- can find a local fitness peak quickly; and the fitness advantage of nearby mutants cannot drop off exponentially fast but has to follow a power-law that long term evolution experiments have associated with unbounded growth in fitness. I present candidates for hard landscapes at scales from singles genes, to microbes, to complex organisms with costly learning (Baldwin effect). Even though hard landscapes are static and finite, local evolutionary equilibrium cannot be assumed.

[1]  Devin Greene,et al.  The peaks and geometry of fitness landscapes. , 2013, Journal of theoretical biology.

[2]  Alden H. Wright,et al.  The computational complexity of N-K fitness functions , 2000, IEEE Trans. Evol. Comput..

[3]  Elliott Sober,et al.  Adaptationism and Optimality , 2001 .

[4]  S. Tonegawa,et al.  Somatic generation of antibody diversity. , 1976, Nature.

[5]  Marcelo Kallmann,et al.  Designing Antibiotic Cycling Strategies by Determining and Understanding Local Adaptive Landscapes , 2013, PloS one.

[6]  R. Watson,et al.  PERSPECTIVE: SIGN EPISTASIS AND GENETIC COSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005, Evolution; international journal of organic evolution.

[7]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[8]  H. Wilf,et al.  There’s plenty of time for evolution , 2010, Proceedings of the National Academy of Sciences.

[9]  Ming Li,et al.  Average Case Complexity Under the Universal Distribution Equals Worst-Case Complexity , 1992, Inf. Process. Lett..

[10]  Adi Livnat,et al.  A mixability theory for the role of sex in evolution , 2008, Proceedings of the National Academy of Sciences.

[11]  Krishnendu Chatterjee,et al.  The Time Scale of Evolutionary Innovation , 2014, PLoS Comput. Biol..

[12]  Joshua R. Nahum,et al.  Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli , 2015, bioRxiv.

[13]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[14]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[15]  Sergey Kryazhimskiy,et al.  The dynamics of adaptation on correlated fitness landscapes , 2009, Proceedings of the National Academy of Sciences.

[16]  Uri Zwick,et al.  Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.

[17]  Daniel A. Levinthal Adaptation on rugged landscapes , 1997 .

[18]  J. Gillespie A simple stochastic gene substitution model. , 1983, Theoretical population biology.

[19]  E. D. Weinberger,et al.  The NK model of rugged fitness landscapes and its application to maturation of the immune response. , 1989, Journal of theoretical biology.

[20]  J. Gravner,et al.  Percolation on the fitness hypercube and the evolution of reproductive isolation. , 1997, Journal of theoretical biology.

[21]  H Allen Orr THE POPULATION GENETICS OF ADAPTATION ON CORRELATED FITNESS LANDSCAPES: THE BLOCK MODEL , 2006, Evolution; international journal of organic evolution.

[22]  Jeffrey E. Barrick,et al.  Genome evolution and adaptation in a long-term experiment with Escherichia coli , 2009, Nature.

[23]  H. A. Orr,et al.  THE POPULATION GENETICS OF ADAPTATION: THE ADAPTATION OF DNA SEQUENCES , 2002, Evolution; international journal of organic evolution.

[24]  S. Tonegawa Somatic generation of antibody diversity , 1983, Nature.

[25]  Thanat Chookajorn,et al.  Stepwise acquisition of pyrimethamine resistance in the malaria parasite , 2009, Proceedings of the National Academy of Sciences.

[26]  T. Ohta THE NEARLY NEUTRAL THEORY OF MOLECULAR EVOLUTION , 1992 .

[27]  Jeffrey E. Barrick,et al.  Genomic Analysis of a Key Innovation in an Experimental E. coli Population , 2012, Nature.

[28]  Joachim Krug,et al.  Evolutionary Accessibility of Mutational Pathways , 2011, PLoS Comput. Biol..

[29]  Larry Bull,et al.  On the Baldwin Effect , 1999, Artificial Life.

[30]  E. Weinberger NP Completeness of Kauffman's N-k Model, A Tuneable Rugged Fitness Landscape , 1996 .

[31]  D. McShea Complexity and evolution: What everybody knows , 1991 .

[32]  K. Atwood,et al.  Selective mechanisms in bacteria. , 1951, Cold Spring Harbor symposia on quantitative biology.

[33]  Kalyanmoy Deb,et al.  Long Path Problems , 1994, PPSN.

[34]  Jirí Matousek,et al.  Random edge can be exponential on abstract cubes , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Ludwig Boltzmann,et al.  Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo , 1896 .

[36]  Michael J. Wiser,et al.  Long-Term Dynamics of Adaptation in Asexual Populations , 2013, Science.

[37]  Hartmut Klauck On the Hardness of Global and Local Approximation , 1996, SWAT.

[38]  A. Ariew Ernst Mayr's 'ultimate/proximate' distinction reconsidered and reconstructed , 2003 .

[39]  Abraham P. Punnen,et al.  Approximate local search in combinatorial optimization , 2004, SODA '04.

[40]  J. Noel,et al.  Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases , 2008, Nature chemical biology.

[41]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[42]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER IN EVOLUTION: SELF-ORGANIZATION AND SELECTION , 1992 .

[43]  Richard E. Lenski,et al.  Phenotypic and Genomic Evolution during a 20,000‐Generation Experiment with the Bacterium Escherichia coli , 2010 .

[44]  D. J. Kiviet,et al.  Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. , 2011, Journal of theoretical biology.

[45]  Jan W. Rivkin,et al.  Patterned Interactions in Complex Systems: Implications for Exploration , 2007, Manag. Sci..

[46]  J. Gillespie The causes of molecular evolution , 1991 .

[47]  O. Tenaillon,et al.  The rule of declining adaptability in microbial evolution experiments , 2015, Front. Genet..

[48]  M. Whitlock,et al.  MULTIPLE FITNESS PEAKS AND EPISTASIS , 1995 .

[49]  J. Gillespie MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE , 1984, Evolution; international journal of organic evolution.

[50]  J. Krug,et al.  Quantitative analyses of empirical fitness landscapes , 2012, 1202.4378.

[51]  Varun Kanade,et al.  Evolution with Recombination , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[52]  J. Krug,et al.  Exploring the Effect of Sex on Empirical Fitness Landscapes , 2009, The American Naturalist.

[53]  Nigel F. Delaney,et al.  Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation , 2011, Science.

[54]  W. H. Kane On Cause and Effect in Biology. , 1962, Science.

[55]  B. Crespi,et al.  The evolution of maladaptation , 2000, Heredity.

[56]  M. Moran,et al.  A brief history. , 2004, Journal of the Medical Association of Georgia.

[57]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[58]  Tim Roughgarden,et al.  Computing equilibria: a computational complexity perspective , 2015, Electron. Colloquium Comput. Complex..

[59]  R. Lenski,et al.  Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[60]  David W Hall,et al.  Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae. , 2010, The Journal of heredity.

[61]  D. J. Kiviet,et al.  Empirical fitness landscapes reveal accessible evolutionary paths , 2007, Nature.

[62]  E. Mayr Cause and Effect in Biology: Kinds of causes, predictability, and teleology are viewed by a practicing biologist , 1961 .

[63]  H. A. Orr,et al.  THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION , 1998, Evolution; international journal of organic evolution.

[64]  L Partridge,et al.  Limits to natural selection , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[66]  R. Lenski,et al.  Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation , 2002, BMC Evolutionary Biology.

[67]  James P. Crutchfield,et al.  Evolutionary dynamics : exploring the interplay of selection, accident, neutrality, and function , 2003 .

[68]  Nadia Creignou,et al.  The complexity of Boolean constraint satisfaction local search problems , 2005, Annals of Mathematics and Artificial Intelligence.

[69]  Leroy Hood,et al.  A single VH gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody , 1981, Cell.

[70]  Craig A. Tovey,et al.  Low order polynomial bounds on the expected performance of local improvement algorithms , 1986, Math. Program..

[71]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[72]  Leslie G. Valiant,et al.  Evolution with Drifting Targets , 2010, COLT.

[73]  R. Lenski,et al.  The population genetics of ecological specialization in evolving Escherichia coli populations , 2000, Nature.

[74]  Tibor Szabó,et al.  Unique sink orientations of cubes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.