Direct molecular NVT simulation of the isobaric heat capacity, speed of sound and Joule–Thomson coefficient

Explicit statistical analogues are given for the isobaric heat capacity, the speed of sound and the Joule–Thomson coefficient in the canonical ensemble. The results can directly serve as rigorous measuring prescriptions in existing molecular NVT simulation codes.

[1]  J. D. Olson,et al.  Benchmarks for the fourth industrial fluid properties simulation challenge , 2008 .

[2]  Klaus Lucas Applied Statistical Thermodynamics , 1991 .

[3]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[4]  I. Szalai,et al.  The NVT plus test particle method for the determination of the vapour-liquid equilibria of pure fluids , 1995 .

[5]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. III. Numerical results , 1994 .

[6]  E. Maginn,et al.  Pressure–enthalpy driven molecular dynamics for thermodynamic property calculation: I. Methodology , 2002 .

[7]  W. Stockmayer Liquids and Liquid Mixtures. , 1961 .

[8]  Ivo Nezbeda,et al.  The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state , 1994 .

[9]  C. Brooks Computer simulation of liquids , 1989 .

[10]  Molecular-level Monte Carlo simulation at fixed entropy , 2006 .

[11]  Ray,et al.  Fundamental treatment of the isoenthalpic-isobaric ensemble. , 1986, Physical review. A, General physics.

[12]  Philippe Ungerer,et al.  Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions , 2007 .

[13]  Gaurav Arya,et al.  Pressure-enthalpy driven molecular dynamics for thermodynamic property calculation II: applications , 2002 .

[14]  J. R. Ray,et al.  Eight physical systems of thermodynamics, statistical mechanics, and computer simulations , 1993 .

[15]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[16]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[17]  Hans Hasse,et al.  On the application of force fields for predicting a wide variety of properties: Ethylene oxide as an example , 2008 .

[18]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties , 2011, Comput. Phys. Commun..

[19]  M. Born Statistical Thermodynamics , 1944, Nature.

[20]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[21]  Stephan Kabelac,et al.  Pressure derivatives in the classical molecular-dynamics ensemble. , 2006, The Journal of chemical physics.

[22]  S. G. Penoncello,et al.  18 Multiparameter equations of state , 2000 .

[23]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[24]  M. Lísal,et al.  Direct molecular-level Monte Carlo simulation of Joule—Thomson processes , 2003 .

[25]  Roland Span,et al.  An accurate Van der Waals-type equation of state for the Lennard-Jones fluid , 1996 .

[26]  Philippe Ungerer,et al.  Prediction of thermodynamic derivative properties of fluids by Monte Carlo simulation , 2001 .

[27]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. I. Fundamentals , 1994 .

[28]  Rolf Lustig,et al.  Microcanonical Monte Carlo simulation of thermodynamic properties , 1998 .