Consistent 4-form fluxes for maximal supergravity
暂无分享,去创建一个
[1] H. Samtleben,et al. Consistent Type IIB Reductions to Maximal 5D Supergravity , 2015, 1506.01385.
[2] N. Warner,et al. Flowing to higher dimensions: a new strongly-coupled phase on M2 branes , 2015, 1506.01045.
[3] O. Varela,et al. IIB supergravity and the E6(6) covariant vector-tensor hierarchy , 2015, Journal of High Energy Physics.
[4] O. Krüger,et al. An SO(3)×SO(3) invariant solution of D = 11 supergravity , 2014, 1410.5090.
[5] H. Samtleben,et al. Supersymmetric E7(7) exceptional field theory , 2014, 1406.3235.
[6] A. Marrani,et al. Symplectic deformations of gauged maximal supergravity , 2014, 1405.2437.
[7] H. Nicolai,et al. Einstein-Cartan calculus for exceptional geometry , 2014, 1401.5984.
[8] Kanghoon Lee,et al. Spheres, Generalised Parallelisability and Consistent Truncations , 2014, 1401.3360.
[9] H. Samtleben,et al. Exceptional field theory. II. E$_{7(7)}$ , 2013, 1312.4542.
[10] H. Nicolai,et al. The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions , 2013, 1312.1061.
[11] H. Nicolai,et al. Nonlinear Kaluza-Klein theory for dual fields , 2013, 1309.0266.
[12] H. Nicolai,et al. Generalised geometry from the ground up , 2013, 1307.8295.
[13] H. Nicolai,et al. Testing the nonlinear flux ansatz for maximal supergravity , 2013, 1303.1013.
[14] H. Nicolai,et al. Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions , 2013, 1302.6219.
[15] G. Dall’Agata,et al. Evidence for a family of SO8 gauged supergravity theories. , 2012, Physical review letters.
[16] M. Cederwall,et al. The gauge structure of generalised diffeomorphisms , 2012, 1208.5884.
[17] H. Nicolai,et al. Consistent truncation of d = 11 supergravity on AdS4 × S7 , 2011, 1112.6131.
[18] A. Kundu,et al. Minimal holographic superconductors from maximal supergravity , 2011, 1110.3454.
[19] H. Samtleben,et al. The maximal D = 4 supergravities , 2007, 0705.2101.
[20] H. Samtleben,et al. Gauging maximal supergravities , 2003, hep-th/0311225.
[21] H. Samtleben,et al. On Lagrangians and gaugings of maximal supergravities , 2002, hep-th/0212239.
[22] N. Warner,et al. An N =2 Supersymmetric Membrane Flow , 2001, hep-th/0107220.
[23] H. Samtleben,et al. Compact and Noncompact Gauged Maximal Supergravities in Three Dimensions , 2001, hep-th/0103032.
[24] N. Warner,et al. N=2 supersymmetric RG flows and the IIB dilaton , 2000, hep-th/0004063.
[25] M. Cvetič,et al. Geometry of The Embedding of Supergravity Scalar Manifolds in D=11 and D=10 , 2000, hep-th/0002099.
[26] P. Nieuwenhuizen,et al. Consistent nonlinear KK reduction of 11d supergravity on AdS7×S4 and self-duality in odd dimensions , 1999, hep-th/9905075.
[27] H. Nicolai,et al. The consistency of the S7 truncation in d=11 supergravity , 1987 .
[28] H. Nicolai,et al. d = 11 supergravity with local SU(8) invariance , 1986 .
[29] H. Nicolai,et al. The parallelizing S7 torsion in gauged N=8 supergravity , 1984 .
[30] N. Warner. Some properties of the scalar potential in gauged supergravity theories , 1984 .
[31] N. Warner. Some New Extrema of the Scalar Potential of Gauged $N=8$ Supergravity , 1983 .
[32] M. Rubin,et al. Dynamics of dimensional reduction , 1980 .
[33] E. Cremmer,et al. The SO(8) supergravity , 1979 .
[34] E. Cremmer,et al. The N = 8 supergravity theory. I. The lagrangian , 1978 .
[35] Thomas Elghozi. E d(d) R + Generalised Geometry , 2012 .
[36] H. Nicolai,et al. The Embedding of Gauged $N=8$ Supergravity Into $d=11$ Supergravity , 1985 .
[37] M. Duff,et al. Kaluza - Klein supergravity and the seven sphere , 1983 .
[38] E. Cremmer. N = 8 Supergravity , 1980 .
[39] H. Samtleben,et al. Maximal gauged supergravity in three dimensions , 2022 .