Consistent 4-form fluxes for maximal supergravity

[1]  H. Samtleben,et al.  Consistent Type IIB Reductions to Maximal 5D Supergravity , 2015, 1506.01385.

[2]  N. Warner,et al.  Flowing to higher dimensions: a new strongly-coupled phase on M2 branes , 2015, 1506.01045.

[3]  O. Varela,et al.  IIB supergravity and the E6(6) covariant vector-tensor hierarchy , 2015, Journal of High Energy Physics.

[4]  O. Krüger,et al.  An SO(3)×SO(3) invariant solution of D = 11 supergravity , 2014, 1410.5090.

[5]  H. Samtleben,et al.  Supersymmetric E7(7) exceptional field theory , 2014, 1406.3235.

[6]  A. Marrani,et al.  Symplectic deformations of gauged maximal supergravity , 2014, 1405.2437.

[7]  H. Nicolai,et al.  Einstein-Cartan calculus for exceptional geometry , 2014, 1401.5984.

[8]  Kanghoon Lee,et al.  Spheres, Generalised Parallelisability and Consistent Truncations , 2014, 1401.3360.

[9]  H. Samtleben,et al.  Exceptional field theory. II. E$_{7(7)}$ , 2013, 1312.4542.

[10]  H. Nicolai,et al.  The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions , 2013, 1312.1061.

[11]  H. Nicolai,et al.  Nonlinear Kaluza-Klein theory for dual fields , 2013, 1309.0266.

[12]  H. Nicolai,et al.  Generalised geometry from the ground up , 2013, 1307.8295.

[13]  H. Nicolai,et al.  Testing the nonlinear flux ansatz for maximal supergravity , 2013, 1303.1013.

[14]  H. Nicolai,et al.  Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions , 2013, 1302.6219.

[15]  G. Dall’Agata,et al.  Evidence for a family of SO8 gauged supergravity theories. , 2012, Physical review letters.

[16]  M. Cederwall,et al.  The gauge structure of generalised diffeomorphisms , 2012, 1208.5884.

[17]  H. Nicolai,et al.  Consistent truncation of d = 11 supergravity on AdS4 × S7 , 2011, 1112.6131.

[18]  A. Kundu,et al.  Minimal holographic superconductors from maximal supergravity , 2011, 1110.3454.

[19]  H. Samtleben,et al.  The maximal D = 4 supergravities , 2007, 0705.2101.

[20]  H. Samtleben,et al.  Gauging maximal supergravities , 2003, hep-th/0311225.

[21]  H. Samtleben,et al.  On Lagrangians and gaugings of maximal supergravities , 2002, hep-th/0212239.

[22]  N. Warner,et al.  An N =2 Supersymmetric Membrane Flow , 2001, hep-th/0107220.

[23]  H. Samtleben,et al.  Compact and Noncompact Gauged Maximal Supergravities in Three Dimensions , 2001, hep-th/0103032.

[24]  N. Warner,et al.  N=2 supersymmetric RG flows and the IIB dilaton , 2000, hep-th/0004063.

[25]  M. Cvetič,et al.  Geometry of The Embedding of Supergravity Scalar Manifolds in D=11 and D=10 , 2000, hep-th/0002099.

[26]  P. Nieuwenhuizen,et al.  Consistent nonlinear KK reduction of 11d supergravity on AdS7×S4 and self-duality in odd dimensions , 1999, hep-th/9905075.

[27]  H. Nicolai,et al.  The consistency of the S7 truncation in d=11 supergravity , 1987 .

[28]  H. Nicolai,et al.  d = 11 supergravity with local SU(8) invariance , 1986 .

[29]  H. Nicolai,et al.  The parallelizing S7 torsion in gauged N=8 supergravity , 1984 .

[30]  N. Warner Some properties of the scalar potential in gauged supergravity theories , 1984 .

[31]  N. Warner Some New Extrema of the Scalar Potential of Gauged $N=8$ Supergravity , 1983 .

[32]  M. Rubin,et al.  Dynamics of dimensional reduction , 1980 .

[33]  E. Cremmer,et al.  The SO(8) supergravity , 1979 .

[34]  E. Cremmer,et al.  The N = 8 supergravity theory. I. The lagrangian , 1978 .

[35]  Thomas Elghozi E d(d) R + Generalised Geometry , 2012 .

[36]  H. Nicolai,et al.  The Embedding of Gauged $N=8$ Supergravity Into $d=11$ Supergravity , 1985 .

[37]  M. Duff,et al.  Kaluza - Klein supergravity and the seven sphere , 1983 .

[38]  E. Cremmer N = 8 Supergravity , 1980 .

[39]  H. Samtleben,et al.  Maximal gauged supergravity in three dimensions , 2022 .