Comparison of various sources of uncertainty in stand-level net present value estimates
暂无分享,去创建一个
Antti Mäkinen | Jussi Rasinmäki | Markus Holopainen | Kari Hyytiäinen | M. Holopainen | A. Mäkinen | J. Rasinmäki | K. Hyytiäinen | Saeed Bayazidi | Ilona Pietilä | S. Bayazidi | Ilona Pietilä
[1] Geir Storvik,et al. Simulation and Monte Carlo Methods , 2006 .
[2] R. Mendelsohn,et al. Timber Harvesting with Fluctuating Prices , 1988 .
[3] S. Popescu,et al. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .
[4] Simo Poso,et al. Kuvioittaisen arvioimismenetelmän perusteita. , 1983 .
[5] Isao Shoji,et al. Searching for an optimal rotation age for forest stand management under stochastic log prices , 1998, Eur. J. Oper. Res..
[6] M. Flood,et al. LiDAR remote sensing of forest structure , 2003 .
[7] Timo Pukkala. Puun hinta ja taloudellisesti optimaalinen hakkuun ajankohta , 1970 .
[8] Eduardo S. Schwartz,et al. Investment Under Uncertainty. , 1994 .
[9] Erkki Koskela,et al. Optimal Harvesting Under Resource Stock and Price Uncertainty , 2005, SSRN Electronic Journal.
[10] Thomas A. Thomson,et al. Optimal forest rotation when stumpage prices follow a diffusion process , 1992 .
[11] Kari Mielikäinen,et al. Koivusekoituksen vaikutus kuusikon rakenteeseen ja kehitykseen. , 1985 .
[12] M. Naesberg,et al. Mathematical programming models for optimal log bucking , 1985 .
[13] Annika Kangas,et al. Percentile based basal area diameter distribution models for Scots pine, Norway spruce and birch species. , 2000 .
[14] W. J. Reed,et al. Predicting the present value distribution of a forest plantation investment , 1996 .
[15] A. Haara. The uncertainty of forest management planning data in Finnish non-industrial private forestry , 2005 .
[16] E. Bulte,et al. Optimal thinning and harvesting with stochastic prices , 2000 .
[17] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[18] M. Insley. A Real Options Approach to the Valuation of a Forestry Investment , 2002 .
[19] Matti Maltamo,et al. Use of the Weibull function in estimating the basal area dbh-distribution. , 1989 .
[20] Annika Kangas,et al. Methods for assessing uncertainty of growth and yield predictions , 1999 .
[21] Åsa Persson,et al. Detecting and measuring individual trees using an airborne laser scanner , 2002 .
[22] J. Hyyppä,et al. DETECTING AND ESTIMATING ATTRIBUTES FOR SINGLE TREES USING LASER SCANNER , 2006 .
[23] W. Reed,et al. The tree-cutting problem in a stochastic environment: The case of age-dependent growth , 1989 .
[24] Annika Kangas,et al. Kuvioittaisen arvioinnin harhan muodostuminen , 1970 .
[25] Jouni Siipilehto,et al. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .
[26] Robert G. Haight,et al. Stochastic Price Models and Optimal Tree Cutting: Results for Loblolly Pine , 1991 .
[27] Tohru Ozaki,et al. Statistical Identification of Storage Models with Application to Stochastic Hydrology , 1985 .
[28] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[29] Yrjö Vuokila,et al. Viljeltyjen havumetsiköiden kasvatusmallit. , 1980 .
[30] Atsushi Yoshimoto. Threshold price as an economic indicator for sustainable forest management under stochastic log price , 2009, Journal of Forest Research.
[31] K. Korhonen,et al. Kuvioittaisen arvioinnin luotettavuus , 1970 .
[32] Silva Fennica. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem , 1999 .
[33] Annika Kangas,et al. Correlations, distributions, and trends in forest inventory errors and their effects on forest planning , 2010 .
[34] Keith Rennolls,et al. Tree diameter distribution modelling: introducing the logitlogistic distribution , 2005 .
[35] T. Gregoire,et al. Comparing strategies for modeling tree diameter percentiles from remeasured plots , 2008 .
[36] George Z. Gertner,et al. Approximating Precision in Simulation Projections: An Efficient Alternative to Monte Carlo Methods , 1987, Forest Science.
[37] Antti Mäkinen,et al. SIMO: An adaptable simulation framework for multiscale forest resource data , 2009 .
[38] Johan Holmgren,et al. Estimation of forest variables using airborne laser scanning , 2003 .
[39] Annika Kangas,et al. On the prediction bias and variance in long-term growth projections , 1997 .
[40] H. Todd Mowrer. Estimating components of propagated variance in growth simulation model projections , 1991 .
[41] George Z. Gertner,et al. Effects of measurement errors on an individual tree-based growth projection system , 1984 .
[42] Andrew J. Plantinga,et al. The Optimal Timber Rotation: An Option Value Approach , 1998 .
[43] N. Duck,et al. Rational Expectations in Macroeconomics: An Introduction to Theory and Evidence , 1991 .
[44] Jouko Laasasenaho. Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .
[45] Saija Huuskonen. Nuorten männiköiden kehitys - taimikonhoito ja ensiharvennus , 2008 .
[46] N. Kolev,et al. Copulas: A Review and Recent Developments , 2006 .
[47] Matti Oikarinen. Etelä-Suomen viljeltyjen rauduskoivikoiden kasvatusmallit. , 1983 .
[48] M. Insley,et al. On Solving the Multirotational Timber Harvesting Problem with Stochastic Prices: A Linear Complementarity Formulation , 2005 .
[49] Timo Pukkala. Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoille , 1970 .
[50] Tomas Lämås,et al. The influence of forest data quality on planning processes in forestry , 2006 .
[51] L. Valsta,et al. A Scenario Approach to Stochastic Anticipatory Optimization in Stand Management , 1992, Forest Science.
[52] E. Næsset. Estimating timber volume of forest stands using airborne laser scanner data , 1997 .