Comparison of various sources of uncertainty in stand-level net present value estimates

The objective of this study was to compare the relative importance of various sources of uncertainties in determining the net present value of forest stands and forested property. This was achieved by performing stand-level simulations that took into account: i) input data errors (airborne laser-scanning data vs. ocular standwise field inventory data), ii) stochastic future development of timber assortment prices and iii) errors in stand-level growth projection models. The starting point of the study was a simulated forest estate comprising 40 stands of various types sufficiently represented (e.g. with respect to species composition, development class distribution, and site quality). Stochastic timber price models were formulated, employing geometric mean-reverting principles. The results showed that sources of uncertainty all had significant effects on the probability distribution of the net present value of the stand. The relative standard deviations of stand net present values averaged 8% for stochastic timber price, 29% for errors in standwise field inventory data, 26% for errors in airborne laser-scanning data and 33% for errors in growth projection models when applying a 3% discount rate. When all three sources of uncertainty were analysed simultaneously, the highest average standard deviation was 47.4%. Interestingly, errors in the growth projections and the quality of inventory data contributed more to the variation in stand net present value than fluctuation in timber price did, although this result was based on the assumption that the forestry industry maintains its competitiveness in the long run. Our modeling approach made it possible to compare various sources of uncertainty and to set confidence intervals for net present value estimates. This approach can also result in information on which sources of uncertainty are focused.

[1]  Geir Storvik,et al.  Simulation and Monte Carlo Methods , 2006 .

[2]  R. Mendelsohn,et al.  Timber Harvesting with Fluctuating Prices , 1988 .

[3]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[4]  Simo Poso,et al.  Kuvioittaisen arvioimismenetelmän perusteita. , 1983 .

[5]  Isao Shoji,et al.  Searching for an optimal rotation age for forest stand management under stochastic log prices , 1998, Eur. J. Oper. Res..

[6]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[7]  Timo Pukkala Puun hinta ja taloudellisesti optimaalinen hakkuun ajankohta , 1970 .

[8]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[9]  Erkki Koskela,et al.  Optimal Harvesting Under Resource Stock and Price Uncertainty , 2005, SSRN Electronic Journal.

[10]  Thomas A. Thomson,et al.  Optimal forest rotation when stumpage prices follow a diffusion process , 1992 .

[11]  Kari Mielikäinen,et al.  Koivusekoituksen vaikutus kuusikon rakenteeseen ja kehitykseen. , 1985 .

[12]  M. Naesberg,et al.  Mathematical programming models for optimal log bucking , 1985 .

[13]  Annika Kangas,et al.  Percentile based basal area diameter distribution models for Scots pine, Norway spruce and birch species. , 2000 .

[14]  W. J. Reed,et al.  Predicting the present value distribution of a forest plantation investment , 1996 .

[15]  A. Haara The uncertainty of forest management planning data in Finnish non-industrial private forestry , 2005 .

[16]  E. Bulte,et al.  Optimal thinning and harvesting with stochastic prices , 2000 .

[17]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[18]  M. Insley A Real Options Approach to the Valuation of a Forestry Investment , 2002 .

[19]  Matti Maltamo,et al.  Use of the Weibull function in estimating the basal area dbh-distribution. , 1989 .

[20]  Annika Kangas,et al.  Methods for assessing uncertainty of growth and yield predictions , 1999 .

[21]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[22]  J. Hyyppä,et al.  DETECTING AND ESTIMATING ATTRIBUTES FOR SINGLE TREES USING LASER SCANNER , 2006 .

[23]  W. Reed,et al.  The tree-cutting problem in a stochastic environment: The case of age-dependent growth , 1989 .

[24]  Annika Kangas,et al.  Kuvioittaisen arvioinnin harhan muodostuminen , 1970 .

[25]  Jouni Siipilehto,et al.  Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .

[26]  Robert G. Haight,et al.  Stochastic Price Models and Optimal Tree Cutting: Results for Loblolly Pine , 1991 .

[27]  Tohru Ozaki,et al.  Statistical Identification of Storage Models with Application to Stochastic Hydrology , 1985 .

[28]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[29]  Yrjö Vuokila,et al.  Viljeltyjen havumetsiköiden kasvatusmallit. , 1980 .

[30]  Atsushi Yoshimoto Threshold price as an economic indicator for sustainable forest management under stochastic log price , 2009, Journal of Forest Research.

[31]  K. Korhonen,et al.  Kuvioittaisen arvioinnin luotettavuus , 1970 .

[32]  Silva Fennica Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem , 1999 .

[33]  Annika Kangas,et al.  Correlations, distributions, and trends in forest inventory errors and their effects on forest planning , 2010 .

[34]  Keith Rennolls,et al.  Tree diameter distribution modelling: introducing the logitlogistic distribution , 2005 .

[35]  T. Gregoire,et al.  Comparing strategies for modeling tree diameter percentiles from remeasured plots , 2008 .

[36]  George Z. Gertner,et al.  Approximating Precision in Simulation Projections: An Efficient Alternative to Monte Carlo Methods , 1987, Forest Science.

[37]  Antti Mäkinen,et al.  SIMO: An adaptable simulation framework for multiscale forest resource data , 2009 .

[38]  Johan Holmgren,et al.  Estimation of forest variables using airborne laser scanning , 2003 .

[39]  Annika Kangas,et al.  On the prediction bias and variance in long-term growth projections , 1997 .

[40]  H. Todd Mowrer Estimating components of propagated variance in growth simulation model projections , 1991 .

[41]  George Z. Gertner,et al.  Effects of measurement errors on an individual tree-based growth projection system , 1984 .

[42]  Andrew J. Plantinga,et al.  The Optimal Timber Rotation: An Option Value Approach , 1998 .

[43]  N. Duck,et al.  Rational Expectations in Macroeconomics: An Introduction to Theory and Evidence , 1991 .

[44]  Jouko Laasasenaho Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .

[45]  Saija Huuskonen Nuorten männiköiden kehitys - taimikonhoito ja ensiharvennus , 2008 .

[46]  N. Kolev,et al.  Copulas: A Review and Recent Developments , 2006 .

[47]  Matti Oikarinen Etelä-Suomen viljeltyjen rauduskoivikoiden kasvatusmallit. , 1983 .

[48]  M. Insley,et al.  On Solving the Multirotational Timber Harvesting Problem with Stochastic Prices: A Linear Complementarity Formulation , 2005 .

[49]  Timo Pukkala Metsikön tuottoarvon ennustemallit kivennäismaan männiköille, kuusikoille ja rauduskoivikoille , 1970 .

[50]  Tomas Lämås,et al.  The influence of forest data quality on planning processes in forestry , 2006 .

[51]  L. Valsta,et al.  A Scenario Approach to Stochastic Anticipatory Optimization in Stand Management , 1992, Forest Science.

[52]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .