Progress in the use of electrospun nanofiber electrodes for solid oxide fuel cells: a review

Abstract The application of one-dimensional nanofibers in the fabrication of an electrode greatly improves the performance of solid oxide fuel cells (SOFCs) due to its advantages on electron transfer and mass transport. Various mixed ionic-electronic conducting materials with perovskites and Ruddlesden-Popper-type metal oxide structures are successfully electrospun into nanofibers in recent years mostly in solvent solution and some in melt forms, which are used as anode and cathode electrodes for SOFCs. This paper presents a comprehensive review of the structure, electrochemical performance, and development of anode and cathode nanofiber electrodes including processing, structure, and property characterization. The focuses are first on the precursor, applied voltage, and polymer in the material electrospinning process, the performance of the fiber, potential limitation and drawbacks, and factors affecting fiber morphology, and sintering temperature for impurity-free fibers. Information on relevant methodologies for cell fabrication and stability issues, polarization resistances, area specific resistance, conductivity, and power densities are summarized in the paper, and technology limitations, research challenges, and future trends are also discussed. The concluded information benefits improvement of the material properties and optimization of microstructure of the electrodes for SOFCs.

[1]  Bin Wang,et al.  Fabrication of high-performance proton-conducting electrolytes from microwave prepared ultrafine powders for solid oxide fuel cells , 2019, Journal of Power Sources.

[2]  H Zhao,et al.  Antimony-doped Bi0.5Sr0.5FeO3−δ as a novel Fe-based oxygen reduction electrocatalyst for solid oxide fuel cells below 600 °C , 2018 .

[3]  P. Costamagna,et al.  La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour , 2018, Journal of the European Ceramic Society.

[4]  Y. Xiong,et al.  Nanofiber-based La0.4Sr0.6TiO 3-Gd0.2Ce0.8O1.9-Ni composite anode for solid oxide fuel cells , 2018 .

[5]  H. Yoon,et al.  Morphologically well-defined Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber with an enhanced triple phase boundary as cathode for low-temperature solid oxide fuel cells , 2018 .

[6]  A. Bandegi,et al.  Effect of solvent quality and humidity on the porous formation and oil absorbency of SAN electrospun nanofibers , 2018 .

[7]  H Zhao,et al.  A novel family of Nb-doped Bi 0.5 Sr 0.5 FeO 3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells , 2017 .

[8]  Yanhai Du,et al.  Pyrolyzable pore-formers for the porous-electrode formation in solid oxide fuel cells: A review , 2017 .

[9]  Y. Xiong,et al.  Nanofiber-based LaxSr1−xTiO3-GdyCe1−yO2−δ composite anode for solid oxide fuel cells , 2017 .

[10]  Y. Xiong,et al.  Nanofiber-structured Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-Gd0.2Ce0.8O1.9 symmetrical composite electrode for solid oxide fuel cells , 2017 .

[11]  Wei Zhou,et al.  Rational Design of a Water‐Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance , 2017, Advanced science.

[12]  B. Aliakbarian,et al.  Parameter Optimization for the Electrospinning of La1–xSrxCo1–yFeyO3–δ Fibers for IT‐SOFC Electrodes , 2017 .

[13]  K. Maca,et al.  Electrospinning and thermal treatment of yttria doped zirconia fibres , 2017 .

[14]  Wonbeak Lee,et al.  Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells , 2017 .

[15]  Young Beom Kim,et al.  Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells , 2017 .

[16]  S. Simonsen,et al.  Structural evolution during calcination and sintering of a (La0.6Sr0.4)0.99CoO3−δ nanofiber prepared by electrospinning , 2017, Nanotechnology.

[17]  Jingcheng Li,et al.  A novel high performance composite anode with in situ growth of Fe-Ni alloy nanoparticles for intermediate solid oxide fuel cells , 2017 .

[18]  A. Muchtar,et al.  Short review on cobalt-free cathodes for solid oxide fuel cells , 2017 .

[19]  Qing Xu,et al.  Survey on electrochemical properties of La2−xSrxNiO4±δ (x = 0.2 and 0.8, δ > 0) cathodes related with structural stability under cathodic polarization conditions , 2017 .

[20]  Chenghao Yang,et al.  A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells , 2017 .

[21]  Xiang Zhang,et al.  2D Crystals Significantly Enhance the Performance of a Working Fuel Cell , 2017 .

[22]  Wei Liu,et al.  A novel BaCe0.5Fe0.3Bi0.2O3–δ perovskite-type cathode for proton-conducting solid oxide fuel cells , 2017 .

[23]  M. Andersson,et al.  Fabrication of Nickel-YSZ cermet nanofibers via electrospinning , 2017 .

[24]  B. Sundén,et al.  Co-fabrication of nickel-YSZ cermet nanofibers via an electrospinning technique , 2017 .

[25]  Y. Xiong,et al.  A Gd0.2Ce0.8O1.9 impregnated Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ nanofiber-structured composite anode in solid oxide fuel cells , 2016 .

[26]  K. Maca,et al.  Sintering kinetic window for yttria-stabilized cubic zirconia , 2016 .

[27]  D. Byun,et al.  Controlling the Diameter of Electrospun Yttria‐Stabilized Zirconia Nanofibers , 2016 .

[28]  Chenghao Yang,et al.  A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells , 2016 .

[29]  Y. Xiong,et al.  Electro-spinning Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ nanofibers infiltrated with Gd0.2Ce0.8O1.9 nanoparticles as cathode for intermediate temperature solid oxide fuel cell , 2016 .

[30]  J. Bassat,et al.  An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications , 2016 .

[31]  K. Zhao,et al.  Fabrication of TiO2 micro-/nano-spheres embedded in nanofibers by coaxial electrospinning , 2016 .

[32]  O. Kesler,et al.  Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes: Influence of carbon black pore former on performance and degradation , 2016 .

[33]  Naiqing Zhang,et al.  Preparation and characterization of Pr0.6Sr0.4FeO3−δ–Ce0.9Pr0.1O2−δ nanofiber structured composite cathode for IT-SOFCs , 2016 .

[34]  Turgut M. Gür,et al.  Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas , 2016 .

[35]  T. Kozawa,et al.  LSCF–GDC composite particles for solid oxide fuel cells cathodes prepared by facile mechanical method , 2016 .

[36]  Ke-ning Sun,et al.  Synthesis of Pr0.6Sr0.4FeO3−δ–xCe0.9Pr0.1O2−δ cobalt-free composite cathodes by a one-pot method for intermediate-temperature solid oxide fuel cells , 2016 .

[37]  Ji-Won Jung,et al.  Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review , 2016 .

[38]  S. Haider,et al.  A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology , 2015, Arabian Journal of Chemistry.

[39]  Zongping Shao,et al.  Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3−δ as a bi-functional electrode material for solid oxide fuel cells , 2015 .

[40]  Y. Xiong,et al.  Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells: Redox stability and effects of electrolytes , 2015 .

[41]  N. Sammes,et al.  Ru-doped lanthanum strontium titanates for the anode of solid oxide fuel cells , 2015 .

[42]  G. Chase,et al.  Effects of Electrospinning Solution Properties on Formation of Beads in Tio2 Fibers with PdO Particles , 2015 .

[43]  A. Banerjee,et al.  Progress in material selection for solid oxide fuel cell technology: A review , 2015 .

[44]  Jianfei Li,et al.  Enhanced SOFC cathode performance by infiltrating Ba0.5Sr0.5Co0.8Fe0.2O3 − δ nanoparticles for intermediate temperature solid oxide fuel cells , 2015 .

[45]  Y. Xiong,et al.  Nanofiber-structured SSC–GDC composite cathodes for a LSGM electrolyte based IT-SOFCs , 2015 .

[46]  Qinglin Wu,et al.  Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers , 2015, Materials.

[47]  Y. Yoo,et al.  Electrochemical estimation of GBCO(GdBaCo2O5+δ)/GDC(Gd2O3-doped CeO2) cathode composites designed for intermediate-temperature solid oxide electrochemical cells , 2015 .

[48]  Raziyeh Ghelich,et al.  Study on Morphology and Size Distribution of Electrospun NiO-GDC Composite Nanofibers , 2015 .

[49]  Zhe Zhao,et al.  Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. , 2015, Nano letters.

[50]  A. Šutka,et al.  Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques , 2015 .

[51]  Chun-Liang Chang,et al.  Preparation and characterization of SOFC cathodes made of SSC nanofibers , 2015 .

[52]  Farah Ejaz Ahmed,et al.  A review on electrospinning for membrane fabrication: Challenges and applications , 2015 .

[53]  Zongping Shao,et al.  A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance , 2015 .

[54]  A. Youzbashi,et al.  Comparative study on structural properties of NiO–GDC nanocomposites fabricated via electrospinning and gel combustion processes , 2015 .

[55]  S. Ramakrishna,et al.  Fabrication of NiO/zirconium oxide nanofibers by electrospinning. , 2014, Materials science & engineering. C, Materials for biological applications.

[56]  Jin-Ha Hwang,et al.  Electrochemical enhancement of GDC(Gd2O3-doped CeO2)/SSC(SmxSr1−xCoO3) composite cathodes in solid oxide fuel cells prepared through the sonochemical synthesis of nanocrystalline GDC electrolytes , 2014 .

[57]  Y. Xiong,et al.  Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells , 2014 .

[58]  H Zhao,et al.  La1.6Sr0.4NiO4 one-dimensional nanofibers as cathode for solid oxide fuel cells , 2014 .

[59]  Hiroki Muroyama,et al.  Degradation of nickel–yttria-stabilized zirconia anode in solid oxide fuel cells under changing temperature and humidity conditions , 2014 .

[60]  Dongwook Shin,et al.  Fibrous mixed conducting cathode with embedded ionic conducting particles for solid oxide fuel cells , 2014 .

[61]  Y. Xiong,et al.  One-dimensional Sr0.7Y0.3CoO2.65−δ nanofibers as cathode material for IT-SOFCs , 2014 .

[62]  N. L. Thomas,et al.  Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter , 2014 .

[63]  Nagihan Okutan,et al.  Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers , 2014 .

[64]  S. Senthil Kumar,et al.  Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review , 2014 .

[65]  Mina Nishi,et al.  Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs) , 2014 .

[66]  Xingbao Zhu,et al.  Functionally graded cathodes based on double perovskite type GdBaCo2O5+δ oxide , 2014 .

[67]  Y. Shul,et al.  Electrochemical characteristics of electrospun La0.6Sr0.4Co0.2Fe0.8O3−δ-Gd0.1Ce0.9O1.95 cathode , 2014 .

[68]  Y. Shul,et al.  Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C , 2014, Nature Communications.

[69]  Soon-Do Yoon,et al.  Thermal cycle development of PMMA pore former removal for honeycomb-type SOFC supports , 2014 .

[70]  Y. Xiong,et al.  A novel processing method of Sr0.7Y0.3CoO2.65−δ cathode for intermediate temperature solid oxide fuel cells , 2014 .

[71]  M. Ho,et al.  Investigation of cathode electrocatalysts composed of electrospun Pt nanowires and Pt/C for proton exchange membrane fuel cells , 2014 .

[72]  Erqing Zhao,et al.  Effect of La0.8Sr0.2Co0.2Fe0.8O3−δ morphology on the performance of composite cathodes , 2014 .

[73]  H Zhao,et al.  Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode , 2014 .

[74]  C. Vayenas,et al.  Ionically conducting ceramics as active catalyst supports. , 2013, Chemical reviews.

[75]  Ju-Young Park,et al.  Fabrication and characterization of hollow TiO2 fibers by microemulsion electrospinning for photocatalytic reactions , 2013 .

[76]  Tong Lin,et al.  Needleless Electrospinning of Nanofibers: Technology and Applications , 2013 .

[77]  D. Mumm,et al.  On the interaction of SSC and LSGM in composite SOFC electrodes , 2013 .

[78]  S. Baumgartner,et al.  The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. , 2013, International journal of pharmaceutics.

[79]  Yen‐Pei Fu,et al.  Chemical bulk diffusion coefficient of Sm0.5Sr0.5CoO3−δ cathode for solid oxide fuel cells , 2013 .

[80]  Chenlong Gao,et al.  Synthesis and Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Nanofiber/Ce0.9Gd0.1O2 Nanoparticle Composite as Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells , 2013 .

[81]  Dongwook Shin,et al.  Performance evaluation of Sm0.5Sr0.5CoO3−δ fibers with embedded Sm0.2Ce0.8O1.9 particles as a solid oxide fuel cell composite cathode , 2013 .

[82]  Chanmin Lee,et al.  Performance evaluation of anode-supported Gd0.1Ce0.9O1.95 cell with electrospun La0.6Sr0.4Co0.2Fe0.8O3−δ-Gd0.1Ce0.9O1.95 cathode , 2013 .

[83]  A. Simchi,et al.  Electrophoretic deposition of functionally-graded NiO–YSZ composite films , 2013 .

[84]  M. M. Souza,et al.  Structural and electrical properties of La0.7Sr0.3Co0.5Fe0.5O3 powders synthesized by solid state reaction , 2013 .

[85]  Philippe Vernoux,et al.  Ionically conducting ceramics as active catalyst supports. , 2013, Chemical reviews.

[86]  Chanmin Lee,et al.  Direct methane fuel cell with La2Sn2O7–Ni–Gd0.1Ce0.9O1.95 anode and electrospun La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.1Ce0.9O1.95 cathode , 2013 .

[87]  A. Haider,et al.  Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine , 2013, Journal of Polymer Research.

[88]  Bogdan Cramariuc,et al.  Fiber diameter in electrospinning process , 2013 .

[89]  Andreas Greiner,et al.  Functional materials by electrospinning of polymers , 2013 .

[90]  Erqing Zhao,et al.  Electrospinning La0.8Sr0.2Co0.2Fe0.8O3−δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode , 2013 .

[91]  A. Naderi,et al.  Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance , 2013, Journal of Polymer Research.

[92]  C. Chou,et al.  Characterization and catalytic activity of La0.6Sr0.4Co0.2Fe0.8O3−δ–yttria stabilized zirconia electrospun nano-fiber as a cathode catalyst , 2013 .

[93]  P. Panda,et al.  Preparation and characterization of Samaria nanofibers by electrospinning , 2013 .

[94]  Dario Pisignano,et al.  Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review , 2013 .

[95]  Xuening Jiang,et al.  Fabrication of GdBaCo2O5+δ cathode using electrospun composite nanofibers and its improved electrochemical performance , 2013 .

[96]  Ce Wang,et al.  One-Dimensional nanostructures: Electrospinning Technique and Unique Nanofibers , 2013 .

[97]  Toshio Suzuki,et al.  High performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells , 2013 .

[98]  Deborah J. Jones,et al.  Reactive coaxial electrospinning of ZrP/ZrO2 nanofibres , 2013 .

[99]  Raziyeh Ghelich,et al.  Preparation and characterisation of NiO–Ce 0.8 Gd 0.2 O composite nanofibres via electrospinning , 2012 .

[100]  Erqing Zhao,et al.  One dimensional La0.8Sr0.2Co0.2Fe0.8O3−δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells , 2012 .

[101]  S. Ananthakumar,et al.  Combustion synthesis of NiO-Ce0.9Gd0.1O1.95 nanocomposite anode and its electrical characteristics of semi-cell configured SOFC assembly , 2012 .

[102]  Zongping Shao,et al.  Sm0.5Sr0.5CoO3-[delta]-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability , 2012 .

[103]  K. B. Yoo,et al.  Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel , 2012 .

[104]  S. Feng,et al.  Electrochemical performance of Nd1.93Sr0.07CuO4 nanofiber as cathode material for SOFC , 2012 .

[105]  J. Caro,et al.  Novel Cobalt-Free, Noble Metal-Free Oxygen-Permeable 40Pr0.6Sr0.4FeO3-delta-60Ce0.9Pr0.1O2-delta, Dual-Phase Membrane , 2012 .

[106]  N. Menzler,et al.  An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode , 2012 .

[107]  Chenghao Yang,et al.  Sulfur‐Tolerant Redox‐Reversible Anode Material for Direct Hydrocarbon Solid Oxide Fuel Cells , 2012, Advanced materials.

[108]  Zongping Shao,et al.  A comparative study of Sm0.5Sr0.5MO3−δ (M = Co and Mn) as oxygen reduction electrodes for solid oxide fuel cells , 2012 .

[109]  N. Hieu,et al.  Synthesis and characterization of nanofiber-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide used as a cathode material for low-temperature solid oxide fuel cells , 2012 .

[110]  S. Licoccia,et al.  Structural analysis, phase stability and electrochemical characterization of Nb doped BaCe0.9Y0.1O3−x electrolyte for IT-SOFCs , 2012 .

[111]  Wenjing Zhang,et al.  High-performance nanofiber fuel cell electrodes. , 2011, ChemSusChem.

[112]  U. S. Hareesh,et al.  Studies on ionic conductivity of stabilized zirconia ceramics (8YSZ) densified through conventional and non-conventional sintering methodologies , 2011 .

[113]  Deborah J. Jones,et al.  Electrospinning: designed architectures for energy conversion and storage devices , 2011 .

[114]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[115]  A. Manthiram,et al.  Oxygen-Deficient Perovskite Sr0.7Y0.3CoO2.65−δ as a Cathode for Intermediate-Temperature Solid Oxide Fuel Cells , 2011 .

[116]  Z. Yaakob,et al.  Synthesis and characterization of cobalt-free Ba0.5Sr0.5Fe0.8Cu0.2O3−δ perovskite oxide cathode nanofibers , 2011 .

[117]  P. Pintauro,et al.  Composite Fuel Cell Membranes from Dual-Nanofiber Electrospun Mats , 2011 .

[118]  M. Alcoutlabi,et al.  Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes. , 2011, ACS applied materials & interfaces.

[119]  Min Xiong,et al.  Impact of synthesis technique on the structure and electrochemical characteristics of Pr0.6Sr0.4Co0.2Fe0.8O3 − δ (PSCF) cathode material , 2011 .

[120]  J. Irvine,et al.  La-doped SrTiO3 as anode material for IT-SOFC , 2011 .

[121]  F. Chen,et al.  Nano-structured Sm0.5Sr0.5CoO3 − δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes , 2011 .

[122]  M. Rieu,et al.  Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells , 2011 .

[123]  Min Wang,et al.  Electrospinning of Poly(Hydroxybutyrate-co-hydroxyvalerate) Fibrous Scaffolds for Tissue Engineering Applications: Effects of Electrospinning Parameters and Solution Properties , 2011 .

[124]  W. Weng,et al.  Preparation and characterization of graded SSC–SDC MIEC cathode for low-temperature solid oxide fuel cells , 2011 .

[125]  S. Cheng,et al.  Pr Doped Ceria and La0.6Sr0.4Co0.2Fe0.8O3 Composite Cathode for Solid Oxide Fuel Cell , 2011 .

[126]  K. Gerdes,et al.  Nanofiber Scaffold for Solid Oxide Fuel Cell Cathode , 2011 .

[127]  Tai-Nan Lin,et al.  Fabrication and characterization of Sm0.2Ce0.8O2−δ–Sm0.5Sr0.5CoO3−δ composite cathode for anode supported solid oxide fuel cell , 2011 .

[128]  A. Chandra,et al.  Microstructural and electrochemical impedance study of nickel–Ce0.9Gd0.1O1.95 anodes for solid oxide fuel cells fabricated by ultrasonic spray pyrolysis , 2011 .

[129]  A. Perron,et al.  Interface reactivity study between La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode material and metallic interconnect for fuel cell , 2011 .

[130]  H. Park Electrochemical Characteristics of a Ni–GDC Nanoparticles-Structured-in-Nanowire as an Anode for LT-SOFCs , 2011 .

[131]  M. M. Souza,et al.  Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC , 2011 .

[132]  Luping Li,et al.  Preparation of fibrous Ni-coated-YSZ anodes for solid oxide fuel cells , 2011 .

[133]  R. Gemmen,et al.  Nanofiber scaffold for cathode of solid oxide fuel cell , 2011 .

[134]  T. Delahaye,et al.  Development of Pr0.58Sr0.4Fe0.8Co0.2O3 − δ–GDC composite cathode for solid oxide fuel cell (SOFC) application , 2010 .

[135]  Y. Alyousef,et al.  Preparation of La0.6Sr0.4Co0.2Fe0.8O3 nanoceramic cathode powders for solid oxide fuel cell (SOFC) application , 2010 .

[136]  Hongfei Lin,et al.  Improvement of electrochemical performance of anode-supported SOFCs by NiO–Ce0.9Gd0.1O1.95 nanocomposite powders , 2010 .

[137]  J. Irvine,et al.  Structure and Properties of La0.4Sr0.4TiO3 Ceramics for Use as Anode Materials in Solid Oxide Fuel Cells , 2010 .

[138]  W. Pan,et al.  Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell , 2010 .

[139]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[140]  O. Hardick,et al.  Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency , 2010 .

[141]  Yue Cao,et al.  Preparation and characterization of Nd2−xSrxCoO4+δ cathodes for intermediate-temperature solid oxide fuel cell , 2010 .

[142]  S. Kundu,et al.  Electrospinning: a fascinating fiber fabrication technique. , 2010, Biotechnology advances.

[143]  Ju-Young Park,et al.  Relative humidity effect on the preparation of porous electrospun polystyrene fibers. , 2010, Journal of nanoscience and nanotechnology.

[144]  Tai-Nan Lin,et al.  Fabrication and characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ—Gadolinia-doped ceria cathode for an anode-supported solid-oxide fuel cell , 2010 .

[145]  F. Chen,et al.  Nano-structured Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells via an Infiltration/Impregnation Technique , 2010 .

[146]  G. Meng,et al.  Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for solid oxide fuel cell cathode , 2010 .

[147]  J. Kilner,et al.  Low temperature diffusion and oxygen stoichiometry in lanthanum nickelate , 2010 .

[148]  M. Edirisinghe,et al.  A novel method of selecting solvents for polymer electrospinning , 2010 .

[149]  Shengmin Guo,et al.  Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing , 2010 .

[150]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[151]  Ching-Ping Wong,et al.  Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property , 2010 .

[152]  Meilin Liu,et al.  Improving La0.6Sr0.4Co0.2Fe0.8O3 − δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3 − δ coating , 2009 .

[153]  K. Hansen A-Site Deficient ( Pr0.6Sr0.4 ) 1 − s Fe0.8Co0.2O3 − δ Perovskites as Solid Oxide Fuel Cell Cathodes , 2009 .

[154]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[155]  Shengmin Guo,et al.  Electrospun Nafion Nanofiber for Proton Exchange Membrane Fuel Cell Application , 2009 .

[156]  Zongping Shao,et al.  Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review , 2009 .

[157]  Baoan Fan,et al.  A-deficit LSCF for intermediate temperature solid oxide fuel cells , 2009 .

[158]  Xuejun Wen,et al.  Effect of electrospinning parameters on the nanofiber diameter and length. , 2009, Materials science & engineering. C, Materials for biological applications.

[159]  Karen De Clerck,et al.  The effect of temperature and humidity on electrospinning , 2009, Journal of Materials Science.

[160]  Hongfei Lin,et al.  Synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite powders for low-temperature solid oxide fuel cell anodes by co-precipitation , 2009 .

[161]  A. Tarancón,et al.  Stability, chemical compatibility and electrochemical performance of GdBaCo2O5 + x layered perovskite as a cathode for intermediate temperature solid oxide fuel cells , 2008 .

[162]  A. Caneiro,et al.  High performance nanostructured IT-SOFC cathodes prepared by novel chemical method , 2008 .

[163]  H Zhao,et al.  New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2 − xNiO4 + δ , 2008 .

[164]  S. Jiang,et al.  Nano-structured (La, Sr)(Co, Fe)O3 + YSZ composite cathodes for intermediate temperature solid oxide fuel cells , 2008 .

[165]  L. Mattoso,et al.  Electrospun Nanofibers of Poly(vinyl alcohol) Reinforced with Cellulose Nanofibrils , 2008 .

[166]  Yanlei Zhang,et al.  Characterization of Pr1−xSrxCo0.8Fe0.2O3−δ (0.2 ≤ x ≤ 0.6) cathode materials for intermediate-temperature solid oxide fuel cells , 2008 .

[167]  Xiufu Sun,et al.  Anode performance of LST-xCeO2 for solid oxide fuel cells , 2008 .

[168]  N. Imanishi,et al.  Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells , 2008 .

[169]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[170]  Zongping Shao,et al.  Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x > 0) perovskite as a solid-oxide fuel cell cathode , 2008 .

[171]  Yaohui Zhang,et al.  Characterization of GdBaCo2O5+δ Cathode for IT-SOFCs. , 2008 .

[172]  S. Chan,et al.  Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte , 2008 .

[173]  Xiaobo Du,et al.  Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs , 2008 .

[174]  Patrick T. Mather,et al.  Nanofiber Network Ion-Exchange Membranes , 2008 .

[175]  Darrell H. Reneker,et al.  Electrospinning jets and polymer nanofibers , 2008 .

[176]  Chun-Liang Chang,et al.  Unique porous thick Sm0.5Sr0.5CoO3 solid oxide fuel cell cathode films prepared by spray pyrolysis , 2008 .

[177]  Yaohui Zhang,et al.  Characterization of GdBaCo2O5+δ cathode for IT-SOFCs , 2008 .

[178]  Zongping Shao,et al.  Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 composite cathode , 2008 .

[179]  R. Maric,et al.  Solid oxide fuel cells with bi-layered electrolyte structure , 2008 .

[180]  Zongping Shao,et al.  Properties and performance of A-site deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ for oxygen permeating membrane , 2007 .

[181]  John B. Goodenough,et al.  Alternative anode materials for solid oxide fuel cells , 2007 .

[182]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[183]  Bing Sun,et al.  Ni/YSZ and Ni–CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells , 2007 .

[184]  Xiaodong Zhu,et al.  Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy , 2007 .

[185]  Naiqing Zhang,et al.  Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC , 2007 .

[186]  P. Supaphol,et al.  Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter , 2007 .

[187]  D. Lamas,et al.  High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. , 2007, Journal of the American Chemical Society.

[188]  T. Nagai,et al.  Relationship between cation substitution and stability of perovskite structure in SrCoO3- δ-based mixed conductors , 2007 .

[189]  Hwan Moon,et al.  Nano-composite materials for high-performance and durability of solid oxide fuel cells , 2006 .

[190]  Jooho Moon,et al.  INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL USING (LA,SR)(CO,FE)O3 - BASED CATHODES , 2006 .

[191]  F. Tietz,et al.  Electrochemical characterization of perovskite-based SOFC cathodes , 2006 .

[192]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer , 2006 .

[193]  Yeong Yoo Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells , 2006 .

[194]  A. Mikos,et al.  Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. , 2006, Biomacromolecules.

[195]  Wei Wang,et al.  GDC-impregnated Ni anodes for direct utilization of methane in solid oxide fuel cells , 2006 .

[196]  Jeffrey W. Fergus,et al.  Oxide anode materials for solid oxide fuel cells , 2006 .

[197]  Younan Xia,et al.  Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes , 2006 .

[198]  K. Hu,et al.  Structure and electrochemical properties of Sm0.5Sr0.5Co1 − xFexO3 − δ cathodes for solid oxide fuel cells , 2006 .

[199]  Hwan Moon,et al.  Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells , 2006 .

[200]  Chaobo Huang,et al.  Electrospun polymer nanofibres with small diameters , 2006, Nanotechnology.

[201]  O. Kwon,et al.  Electrospinning of chitosan dissolved in concentrated acetic acid solution. , 2005, Biomaterials.

[202]  Ioannis S. Chronakis,et al.  Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review , 2005 .

[203]  Yen Wei,et al.  Study on correlation of morphology of electrospun products of polyacrylamide with ultrahigh molecular weight , 2005 .

[204]  K. Lee,et al.  Characterization of gelatin nanofiber prepared from gelatin–formic acid solution , 2005 .

[205]  Timothy E. Long,et al.  Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent , 2005 .

[206]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[207]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .

[208]  Meifang Zhu,et al.  Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning , 2005 .

[209]  M. Viviani,et al.  Analysis of the oxygen reduction process on SOFC composite electrodes , 2005 .

[210]  Xiaoyan Yuan,et al.  Study on morphology of electrospun poly(vinyl alcohol) mats , 2005 .

[211]  R. Glass,et al.  Effects of the Use of Pore Formers on Performance of an Anode supported Solid Oxide Fuel Cell , 2005 .

[212]  Ce Wang,et al.  Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning , 2004 .

[213]  Meilin Liu,et al.  Nanocomposite Electrodes Fabricated by a Particle-Solution Spraying Process for Low-Temperature SOFCs , 2004 .

[214]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[215]  S. Jiang,et al.  A review of anode materials development in solid oxide fuel cells , 2004 .

[216]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[217]  Eyal Zussman,et al.  Experimental investigation of the governing parameters in the electrospinning of polymer solutions , 2004 .

[218]  Meilin Liu,et al.  Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs , 2004 .

[219]  Weiliam Chen,et al.  Optimization and characterization of dextran membranes prepared by electrospinning. , 2004, Biomacromolecules.

[220]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[221]  Younan Xia,et al.  Magnetic nanofibers of nickel ferrite prepared by electrospinning , 2003 .

[222]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[223]  Younan Xia,et al.  Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays , 2003 .

[224]  S. Chan,et al.  Development of ( La , Sr ) MnO3-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells , 2003 .

[225]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[226]  I. Chronakis,et al.  Polymer nanofibers assembled by electrospinning , 2003 .

[227]  C. Xia Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs , 2002 .

[228]  John F. Rabolt,et al.  Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers , 2002 .

[229]  You-Lo Hsieh,et al.  Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate , 2002 .

[230]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[231]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[232]  Kwangsok Kim,et al.  Structure and process relationship of electrospun bioabsorbable nanofiber membranes , 2002 .

[233]  E. P. Murray,et al.  Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes , 2002 .

[234]  Burak Erman,et al.  Electrospinning of polyurethane fibers , 2002 .

[235]  Jürgen Fleig,et al.  On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes , 2002 .

[236]  M. Mogensen,et al.  Composite Electrodes in Solid Oxide Fuel Cells and Similar Solid State Devices , 2000 .

[237]  M. Marinšek,et al.  Preparation of Ni–YSZ composite materials for solid oxide fuel cell anodes by the gel-precipitation method , 2000 .

[238]  Darrell H. Reneker,et al.  Beaded nanofibers formed during electrospinning , 1999 .

[239]  S. Kumar,et al.  Electrospinning in solid oxide fuel cells – A review , 2017 .

[240]  Rak-Hyun Song,et al.  Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review , 2016 .

[241]  Fanglin Chen,et al.  In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells , 2015 .

[242]  M. Othman,et al.  A review on the fabrication of electrospun polymer electrolyte membrane for direct methanol fuel cell , 2015 .

[243]  M. Zunic,et al.  Chemical stability and electrical properties of Nb doped BaCe0.9Y0.1O3−δ as a high temperature proton conducting electrolyte for IT-SOFC , 2013 .

[244]  A. Sarac,et al.  Polymer Nanofibers via Electrospinning: Factors Affecting Nanofiber Quality , 2013 .

[245]  C. Ding,et al.  A comparative study of NiO–Ce0.9Gd0.1O1.95 nanocomposite powders synthesized by hydroxide and oxalate co-precipitation methods , 2012 .

[246]  Dongwook Shin,et al.  Preparation and characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes for IT-SOFCs by electrostatic slurry spray deposition , 2012 .

[247]  J. Caro,et al.  Novel Cobalt-Free , Noble Metal-Free Oxygen-Permeable 40 Pr 0 . 6 Sr 0 . 4 FeO 3 ‐ δ − 60 Ce 0 . 9 Pr 0 . 1 O 2 − δ Dual-Phase Membrane , 2012 .

[248]  N. Miki,et al.  Gas permeability and mechanical properties of PDMS mixed with PMPS nanofibers produced by electrospinning , 2012 .

[249]  S. Chan,et al.  Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell , 2010 .

[250]  Mottaghitalab,et al.  Structural characteristics evaluation of electrospun nonwoven webs , 2009 .

[251]  M Ziabari,et al.  Control of governing parameters in electrospinning process , 2009 .

[252]  Mottaghitalab,et al.  Control of electrospun nanofiber diameter using distance transform method , 2009 .

[253]  Abdul-Majeed Azad,et al.  Fabrication of yttria-stabilized zirconia nanofibers by electrospinning , 2006 .

[254]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[255]  S. Shivkumar,et al.  Effect of molecular weight on fibrous PVA produced by electrospinning , 2004 .

[256]  San Ping Jiang,et al.  A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes , 2002 .

[257]  E. Ivers-Tiffée,et al.  Materials and technologies for SOFC-components , 2001 .

[258]  J. Deitzel,et al.  The effect of processing variables on the morphology of electrospun nanofibers and textiles , 2001 .

[259]  Meilin Liu,et al.  Equivalent Circuit Approximation to Porous Mixed‐Conducting Oxygen Electrodes in Solid‐State Cells , 1998 .