Multiplicatively Repeated Non-Binary LDPC Codes

We propose non-binary LDPC codes concatenated with multiplicative repetition codes. By multiplicatively repeating the (2,3)-regular non-binary LDPC mother code of rate 1/3, we construct rate-compatible codes of lower rates 1/6, 1/9, 1/12,... Surprisingly, such simple low-rate non-binary LDPC codes outperform the best low-rate binary LDPC codes so far. Moreover, we propose the decoding algorithm for the proposed codes, which can be decoded with almost the same computational complexity as that of the mother code.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  David Declercq,et al.  Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images , 2008, IEEE Transactions on Communications.

[3]  Zhi Ding,et al.  High Performance Non-Binary Quasi-Cyclic LDPC Codes on Euclidean Geometries LDPC Codes on Euclidean Geometries , 2009, IEEE Transactions on Communications.

[4]  M. Arabaci,et al.  High-Rate Nonbinary Regular Quasi-Cyclic LDPC Codes for Optical Communications , 2009, Journal of Lightwave Technology.

[5]  Shu Lin,et al.  Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions - [transactions papers] , 2009, IEEE Transactions on Communications.

[6]  Kenta Kasai,et al.  Information reconciliation for QKD with rate-compatible non-binary LDPC codes , 2010, 2010 International Symposium On Information Theory & Its Applications.

[7]  Igal Sason,et al.  An Improved Sphere-Packing Bound for Finite-Length Codes Over Symmetric Memoryless Channels , 2006, IEEE Transactions on Information Theory.

[8]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[9]  Ivan J. Fair,et al.  Density Evolution for Nonbinary LDPC Codes Under Gaussian Approximation , 2009, IEEE Transactions on Information Theory.

[10]  Jeongseok Ha,et al.  Optimized puncturing and shortening distributions for nonbinary LDPC codes over the binary erasure channel , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[11]  Jørn Justesen,et al.  Class of constructive asymptotically good algebraic codes , 1972, IEEE Trans. Inf. Theory.

[12]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[13]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[14]  Khaled Abdel-Ghaffar,et al.  Transactions Papers Construction of Non-Binary Quasi-Cyclic LDPC Codes by Arrays and Array Dispersions , 2009 .

[15]  David Declercq,et al.  Nonbinary Hybrid LDPC Codes , 2010, IEEE Transactions on Information Theory.

[16]  I.B. Djordjevic,et al.  Nonbinary LDPC codes for optical communication systems , 2005, IEEE Photonics Technology Letters.

[17]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[18]  Matthew C. Davey,et al.  Error-Correction using Low Density Parity Check Codes , 1999 .

[19]  Wu Chang,et al.  Nonbinary LDPC Codes for 4-kB Sectors , 2008, IEEE Transactions on Magnetics.

[20]  Dariush Divsalar,et al.  Low-rate LDPC codes with simple protograph structure , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[21]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[22]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[23]  D. Mackay,et al.  Low-Density Parity Check Codes over , 1998 .

[24]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[25]  Li Ping,et al.  Generalized Low-Density Parity-Check Codes Based on Hadamard Constraints , 2007, IEEE Transactions on Information Theory.

[26]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[27]  C. Poulliat,et al.  Low-rate non-binary hybrid LDPC codes , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.

[28]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[29]  A. Wyner A note on the capacity of the band-limited Gaussian channel , 1966, The Bell System Technical Journal.

[30]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[31]  Kenta Kasai,et al.  Rate-Compatible Slepian-Wolf Coding with Short Non-Binary LDPC Codes , 2010, 2010 Data Compression Conference.

[32]  Igal Sason,et al.  Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity , 2007, IEEE Transactions on Information Theory.

[33]  P. K. Chaturvedi,et al.  Communication Systems , 2002, IFIP — The International Federation for Information Processing.

[34]  Marc P. C. Fossorier,et al.  Sphere-packing bounds revisited for moderate block lengths , 2004, IEEE Transactions on Information Theory.

[35]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[36]  David Declercq,et al.  Rate-compatible non-binary LDPC codes concatenated with multiplicative repetition codes , 2010, 2010 IEEE International Symposium on Information Theory.

[37]  Kenta Kasai,et al.  Fountain codes with multiplicatively repeated non-binary LDPC codes , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.