Survey of the Visual Exploration and Analysis of Perfusion Data

Dynamic contrast-enhanced image data (perfusion data) are used to characterize regional tissue perfusion. Perfusion data consist of a sequence of images, acquired after a contrast agent bolus is applied. Perfusion data are used for diagnostic purposes in oncology, ischemic stroke assessment or myocardial ischemia. The diagnostic evaluation of perfusion data is challenging, since the data is complex and exhibits various artifacts, e.g., motion artifacts. We provide an overview on existing methods to analyze, and visualize CT and MR perfusion data. The integrated visualization of several 2D parameter maps, the 3D visualization of parameter volumes and exploration techniques are discussed. An essential aspect in the diagnosis of perfusion data is the correlation between perfusion data and derived time-intensity curves as well as with other image data, in particular with high resolution morphologic image data. We discuss visualization support with respect to the three major application areas: ischemic stroke diagnosis, breast tumor diagnosis and the diagnosis of coronary heart disease.

[1]  Bernhard Preim,et al.  Intuitive Mapping of Perfusion Parameters to Glyph Shape , 2008, Bildverarbeitung für die Medizin.

[2]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[3]  Stefan Bruckner,et al.  MammoExplorer: An Advanced CAD Application for Breast DCE-MRI , 2005 .

[4]  M. O’Sullivan,et al.  MRI based diffusion and perfusion predictive model to estimate stroke evolution. , 2001, Magnetic resonance imaging.

[5]  G D Rubin,et al.  STS-MIP: a new reconstruction technique for CT of the chest. , 1993, Journal of computer assisted tomography.

[6]  Martin O Leach,et al.  Reference tissue quantification of DCE-MRI data without a contrast agent calibration , 2007, Physics in medicine and biology.

[7]  Bernhard Preim,et al.  Multiparametervisualisierung zur Exploration dynamischer Bilddaten , 2005, Bildverarbeitung für die Medizin.

[8]  B. Siewert,et al.  Acute human stroke studied by whole brain echo planar diffusion‐weighted magnetic resonance imaging , 1995, Annals of neurology.

[9]  Tim W. Nattkemper,et al.  An Adaptive Tissue Characterisation Network for Model-Free Visualisation of Dynamic Contrast-Enhanced Magnetic Resonance Image Data , 2005 .

[10]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[11]  L. Axel Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. , 1980, Radiology.

[12]  Peter Hunold,et al.  Magnetic resonance cardiac perfusion imaging–a clinical perspective , 2006, European Radiology.

[13]  Ganesh S. Oak Information Visualization Introduction , 2022 .

[14]  Donald S. Williams,et al.  Perfusion imaging , 1992, Magnetic resonance in medicine.

[15]  Bernhard Preim,et al.  Integrated Visualization of Morphologic and Perfusion Data for the Analysis of Coronary Artery Disease , 2006, EuroVis.

[16]  Functional Mri,et al.  MR perfusion and diffusion imaging in ischaemic brain disease , 1997 .

[17]  H. Degani,et al.  Dynamic contrast-enhanced imaging and analysis at high spatial resolution of MCF7 human breast tumors. , 1997, Journal of magnetic resonance.

[18]  M. Knopp,et al.  Functional tumor imaging with dynamic contrast‐enhanced magnetic resonance imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[19]  F Shishido,et al.  Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. , 1988, Circulation.

[20]  G. V. von Schulthess,et al.  Assessment of Myocardial Perfusion in Coronary Artery Disease by Magnetic Resonance: A Comparison With Positron Emission Tomography and Coronary Angiography , 2001, Circulation.

[21]  Thomas Tolxdorff,et al.  Characterization of stroke lesions using a histogram-based data analysis including diffusion- and perfusion-weighted imaging , 2000, Medical Imaging.

[22]  N. Obuchowski,et al.  Assessment of suspected breast cancer by MRI: a prospective clinical trial using a combined kinetic and morphologic analysis. , 2005, AJR. American journal of roentgenology.

[23]  Karsten Rink,et al.  Segmentation of the left ventricle in 4D-dSPECT data using free-form deformation of super quadrics , 2004, SPIE Medical Imaging.

[24]  N. Hylton,et al.  Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. , 2006, Radiology.

[25]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[26]  G Brix,et al.  Pathophysiologic basis of contrast enhancement in breast tumors , 1999, Journal of magnetic resonance imaging : JMRI.

[27]  Scott Fields,et al.  Mapping pathophysiological features of breast tumors by MRI at high spatial resolution , 1997, Nature Medicine.

[28]  Karl-Hans Englmeier,et al.  Dynamic MR mammography: multidimensional visualization of contrast enhancement in virtual reality , 2002, SPIE Medical Imaging.

[29]  Ashley M. Groves,et al.  Nuclear cardiology: myocardial perfusion imaging with SPECT and PET , 2006 .

[30]  W J MacIntyre,et al.  A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  W. Kaiser,et al.  MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. , 1989, Radiology.

[32]  Konstantin Nikolaou,et al.  Quantification of Pulmonary Blood Flow and Volume in Healthy Volunteers by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Parallel Imaging Technique , 2004, Investigative radiology.

[33]  J. Eastwood,et al.  Perfusion CT with iodinated contrast material. , 2003, AJR. American journal of roentgenology.

[34]  C. Wood,et al.  Computer Aided Detection (CAD) for Breast MRI , 2005, Technology in cancer research & treatment.

[35]  Axel Wismüller,et al.  Tumor feature visualization with unsupervised learning , 2005, Medical Image Anal..

[36]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[37]  H.-O. Peitgen,et al.  Novel methods for parameter-based analysis of myocardial tissue in MR images , 2007, SPIE Medical Imaging.

[38]  Bernhard Preim,et al.  Exploration of Time-Varying Data for Medical Diagnosis , 2002, VMV.

[39]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[40]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[41]  K. H. Hohne,et al.  X-Ray Functional Imaging--evaluation Of The Properties Of Different Parameters , 1981, Other Conferences.

[42]  M. Giger,et al.  Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. , 2006, Medical physics.

[43]  S. Heywang-Köbrunner,et al.  Contrast-Enhanced MRI of the Breast , 1991 .

[44]  Bernhard Preim,et al.  A Four‐level Focus+Context Approach to Interactive Visual Analysis of Temporal Features in Large Scientific Data , 2008, Comput. Graph. Forum.

[45]  Eduard Gröller,et al.  Application-Oriented Extensions of Profile Flags , 2006, EuroVis.

[46]  A Heinig,et al.  Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. , 1997, European journal of radiology.

[47]  G Brix,et al.  Classification of signal-time curves from dynamic MR mammography by neural networks. , 2001, Magnetic resonance imaging.

[48]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[49]  Haim Levkowitz,et al.  Color icons-merging color and texture perception for integrated visualization of multiple parameters , 1991, Proceeding Visualization '91.

[50]  M. E. Groller,et al.  Profile Flags: a novel metaphor for probing of T/sub 2/ maps , 2005, VIS 05. IEEE Visualization, 2005..

[51]  S L Bacharach,et al.  13N-ammonia myocardial blood flow and uptake: relation to functional outcome of asynergic regions after revascularization. , 1999, Journal of the American College of Cardiology.

[52]  Emmanuel L Barbier,et al.  Comparative Overview of Brain Perfusion Imaging Techniques , 2005, Journal of neuroradiology. Journal de neuroradiologie.

[53]  J Paul Finn,et al.  Renal perfusion: Comparison of saturation‐recovery TurboFLASH measurements at 1.5T with saturation‐recovery TurboFLASH and time‐resolved echo‐shared angiographic technique (TREAT) at 3.0T , 2006, Journal of magnetic resonance imaging : JMRI.

[54]  Teresa Houston,et al.  Impact of Myocardial Perfusion Imaging with PET and 82Rb on Downstream Invasive Procedure Utilization, Costs, and Outcomes in Coronary Disease Management , 2007, Journal of Nuclear Medicine.

[55]  Russell Taylor Visualizing Multiple Fields on the Same Surface , 2002, IEEE Computer Graphics and Applications.

[56]  Bernhard Preim,et al.  Interactive Visual Analysis of Perfusion Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[57]  Eduard Gröller,et al.  Profile Flags: a Novel Metaphor for Probing of T2 Maps , 2005, IEEE Visualization.

[58]  B R Rosen,et al.  Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. , 1999, Radiology.

[59]  K J Klose,et al.  Analysis of mice tumor models using dynamic MRI data and a dedicated software platform*. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[60]  NidalAl-Saadi,et al.  Noninvasive Detection of Myocardial Ischemia From Perfusion Reserve Based on Cardiovascular Magnetic Resonance , 2000 .

[61]  H. Oswald,et al.  Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. , 2000, Circulation.

[62]  Robert R Edelman,et al.  Contrast-enhanced MR imaging of the heart: overview of the literature. , 2004, Radiology.

[63]  D N Firmin,et al.  Echo‐planar magnetic resonance myocardial perfusion imaging: Parametric map analysis and comparison with thallium SPECT , 2001, Journal of magnetic resonance imaging : JMRI.

[64]  M. Wintermark,et al.  Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. , 2005, AJNR. American journal of neuroradiology.

[65]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.