The doping of carbon nanotubes with nitrogen and their potential applications

This contribution provides a comprehensive overview of the experimental and theoretical topics related to the introduction of nitrogen into both single- and multi-walled carbon nanotube structures. It covers the synthesis, characterization and analysis of the potential applications of carbon nanotubes based on intrinsic changes in properties induced upon nitrogen incorporation. The reason why nitrogen-doped carbon nanotubes are the target of several investigations is explained not only from the state-of-the-art research point of view but special attention is given to present the results available in the literature weighed against the ideal materials expected for applications. A comparison with other nitrogen-doped carbon systems is also provided.

[1]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[2]  David J. Smith,et al.  Decorating carbon nanotubes with nanostructured nickel particles via chemical methods , 2006 .

[3]  Terauchi,et al.  Development of a high energy resolution electron energy‐loss spectroscopy microscope , 1999, Journal of microscopy.

[4]  Jeunghee Park,et al.  Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes: Control of the Nitrogen Content over the Temperature Range 900−1100 °C , 2003 .

[5]  J. Robertson,et al.  Nitrogen doping of tetrahedral amorphous carbon , 1995 .

[6]  N. Grobert,et al.  Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition , 2009 .

[7]  J. Ihm,et al.  Deep levels in the band gap of the carbon nanotube with vacancy-related defects , 2006 .

[8]  Jing Kong,et al.  Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes , 2006 .

[9]  O. Stéphan,et al.  Nitrogen Configuration in Individual CNx-SWNTs Synthesized by Laser Vaporization Technique , 2009 .

[10]  P. Avouris,et al.  Doping and phonon renormalization in carbon nanotubes. , 2007, Nature nanotechnology.

[11]  W. Hsu,et al.  Electron beam puncturing of carbon nanotube containers for release of stored N2 gas , 1975 .

[12]  C N R Rao,et al.  Nitrogen- and boron-doped double-walled carbon nanotubes. , 2007, ACS nano.

[13]  P. Bernier,et al.  Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. , 2003, Chemical communications.

[14]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[15]  Quan-hong Yang,et al.  Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls. , 2005, Nano letters.

[16]  H. Ågren,et al.  Nitrogen bonding structure in carbon nitride thin films studied by soft x-ray spectroscopy , 2001 .

[17]  Jeunghee Park,et al.  Experimental and theoretical studies on the structure of N-doped carbon nanotubes: Possibility of intercalated molecular N2 , 2004 .

[18]  J. Robertson Diamond-like amorphous carbon , 2002 .

[19]  L. Herz,et al.  Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes , 2005 .

[20]  T. Pichler,et al.  Tailoring N-Doped Single and Double Wall Carbon Nanotubes from a Nondiluted Carbon/Nitrogen Feedstock , 2007 .

[21]  A. Govindaraj,et al.  Nitrogen-containing carbon nanotubes , 1997 .

[22]  T. Pichler,et al.  Effects of the reaction atmosphere composition on the synthesis of single and multiwalled nitrogen-doped nanotubes. , 2007, The Journal of chemical physics.

[23]  L. Wirtz,et al.  Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes , 2004 .

[24]  H. Zeng,et al.  Effects of nitrogen substitutional doping on the electronic transport of carbon nanotube , 2008 .

[25]  T. Komatsu Attempted chemical synthesis of graphite-likecarbon nitride , 2001 .

[26]  P. Ajayan,et al.  Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen , 1994, Science.

[27]  M. Knupfer,et al.  Unraveling van Hove singularities in x-ray absorption response of single-wall carbon nanotubes , 2007 .

[28]  Identification of electron donor states in N-doped carbon nanotubes , 2000, cond-mat/0011318.

[29]  D. Schneider,et al.  Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere , 2004 .

[30]  Gang Zhang,et al.  Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes , 2002 .

[31]  S. Latil,et al.  Mesoscopic transport in chemically doped carbon nanotubes. , 2004, Physical review letters.

[32]  Jeunghee Park,et al.  Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy. , 2005, The journal of physical chemistry. B.

[33]  Fred Wudl,et al.  Isolation of the Heterofullerene C59N as Its Dimer (C59N)2 , 1995, Science.

[34]  C. Ewels,et al.  Nitrogen doping in carbon nanotubes. , 2005, Journal of nanoscience and nanotechnology.

[35]  M. Terrones,et al.  Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization , 2006 .

[36]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[37]  Jeunghee Park,et al.  Release of N(2) from the carbon nanotubes via high-temperature annealing. , 2005, The journal of physical chemistry. B.

[38]  Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors , 2005 .

[39]  Y. Hao,et al.  The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile , 2003 .

[40]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[41]  Wolfgang Hoenlein,et al.  Ways towards the scaleable integration of carbon nanotubes into silicon based technology , 2003 .

[42]  Y. Bando,et al.  Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide , 2004 .

[43]  P. Papakonstantinou,et al.  Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes , 2007 .

[44]  A. Marchand,et al.  Proprietes electroniques d'un carbone dope a l'azote , 1966 .

[45]  F. Alvarez,et al.  Incorporation of nitrogen in carbon nanotubes , 2002 .

[46]  Miyamoto,et al.  Chiral tubules of hexagonal BC2N. , 1994, Physical review. B, Condensed matter.

[47]  M. Terrones,et al.  Fabrication of vapor and gas sensors using films of aligned CNx nanotubes , 2004 .

[48]  P. Bernier,et al.  Synthesis of N-doped SWNT using the arc-discharge procedure , 2004 .

[49]  A. Jorio,et al.  Electron and phonon renormalization near charged defects in carbon nanotubes. , 2008, Nature materials.

[50]  L. Escobar-Alarcón,et al.  Comparison and semiconductor properties of nitrogen doped carbon thin films grown by different techniques , 2008 .

[51]  Encapsulating C59N azafullerene derivatives inside single-wall carbon nanotubes , 2006 .

[52]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[53]  Q. Jiang,et al.  Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study. , 2007, The Journal of chemical physics.

[54]  J. Gracia,et al.  First principles study of C3N4 carbon nitride nanotubes , 2009 .

[55]  Jun‐Jie Zhu,et al.  Synthesis of nitrogen-doped horn-shaped carbon nanotubes by reduction of pentachloropyridine with metallic sodium , 2007 .

[56]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[57]  M. Terrones,et al.  Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. , 2006, Nano letters.

[58]  Xueping Gao,et al.  A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes , 2004 .

[59]  T. Pichler,et al.  Chemical vapor deposition of functionalized single‐walled carbon nanotubes with defined nitrogen doping , 2007 .

[60]  C. Achete,et al.  Internal stress reduction by nitrogen incorporation in hard amorphous carbon thin films , 1992 .

[61]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[62]  M. Knupfer,et al.  Electronic properties of FeCl 3 -intercalated single-wall carbon nanotubes , 2004 .

[63]  O. Stéphan,et al.  Combined STM/STS, TEM/EELS investigation of CNx ‐SWNTs , 2008 .

[64]  Q. Jiang,et al.  First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges , 2008 .

[65]  R. Mokaya,et al.  Aligned N-Doped Carbon Nanotube Bundles Prepared via CVD Using Zeolite Substrates , 2005 .

[66]  David J Smith,et al.  Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. , 2006, Small.

[67]  S. Louhibi,et al.  First principles study of AlBi , 2008 .

[68]  Yoshinori Ando,et al.  Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources , 2009 .

[69]  M. Knupfer,et al.  Electronic and optical properties of alkali-metal-intercalated single-wall carbon nanotubes , 2003 .

[70]  Lain‐Jong Li,et al.  The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes , 2006 .

[71]  L Forró,et al.  Magnetic fullerenes inside single-wall carbon nanotubes. , 2006, Physical review letters.

[72]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[73]  P. Bernier,et al.  Nitrogen doping of metallic single-walled carbon nanotubes:n-type conduction and dipole scattering , 2006, cond-mat/0601513.

[74]  O. Stéphan,et al.  Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. , 2008, Ultramicroscopy.

[75]  M. Terrones,et al.  Synthetic routes to nanoscale BxCyNz architectures , 2002 .

[76]  E. Kroke,et al.  Novel group 14 nitrides , 2004 .

[77]  H. Kang,et al.  Nitrogen doping and chirality of carbon nanotubes , 2004 .

[78]  M. Terrones,et al.  Viability studies of pure carbon- and nitrogen-doped nanotubes with Entamoeba histolytica: from amoebicidal to biocompatible structures. , 2007, Small.

[79]  G. Seifert,et al.  Curvature effects of nitrogen on graphitic sheets: Structures and energetics , 2007 .

[80]  C. Cao,et al.  Synthesis of Carbon Nitride Nanotubes via a Catalytic-Assembly Solvothermal Route , 2004 .

[81]  A. Reilly,et al.  Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds , 2003 .

[82]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[83]  R. Kaltofen,et al.  Influence of the Catalyst Hydrogen Pretreatment on the Growth of Vertically Aligned Nitrogen-Doped Carbon Nanotubes , 2007 .

[84]  F. Xu,et al.  Nitrogen doping of single walled carbon nanotubes by low energy N2+ ion implantation , 2008 .

[85]  P. Puech,et al.  Influence of nitrogen doping on the radial breathing mode in carbon nanotubes , 2009 .

[86]  U. Wild,et al.  Structural and chemical characterization of N-doped nanocarbons , 1998 .

[87]  Alessandro Curioni,et al.  On-Ball Doping of Fullerenes: The Electronic Structure of C59N Dimers from Experiment and Theory , 1997 .

[88]  A. Fazzio,et al.  Transport properties of single vacancies in nanotubes , 2008 .

[89]  Chemically active substitutional nitrogen impurity in carbon nanotubes. , 2003, Physical review letters.

[90]  Jeunghee Park,et al.  N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition , 2005 .

[91]  K. Chun,et al.  Potassium doping in the double-walled carbon nanotubes at room temperature , 2008 .

[92]  Bernholc,et al.  Atomic structure and doping of microtubules. , 1993, Physical review. B, Condensed matter.

[93]  Vikram Kumar,et al.  Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process , 2006 .

[94]  A. M. Rao,et al.  Intercalated nanographite: Structure and electronic properties , 2001 .

[95]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[96]  X. B. Zhang,et al.  Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1−xMoO4 catalyst , 2007 .

[97]  S. Lim,et al.  Effects of nitrogenation on single-walled carbon nanotubes within density functional theory , 2007 .

[98]  Seungwu Han,et al.  Field emission of doped carbon nanotubes , 2006 .

[99]  Chih-Kai Yang,et al.  Magnetic molecules made of nitrogen or boron-doped fullerenes , 2008 .

[100]  Zheng Hu,et al.  High-pressure pyrolysis of melamine route to nitrogen-doped conical hollow and bamboo-like carbon nanotubes , 2006 .

[101]  Kuei-Hsien Chen,et al.  Atomic-scale deformation in N-doped carbon nanotubes. , 2006, Journal of the American Chemical Society.

[102]  M. Terrones,et al.  Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis , 2004 .

[103]  D. Carroll,et al.  Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. , 2005, The journal of physical chemistry. B.