Computing coset leaders and leader codewords of binary codes

In this paper we use the Grobner representation of a binary linear code to give efficient algorithms for computing the whole set of coset leaders, denoted by and the set of leader codewords, denoted by . The first algorithm could be adapted to provide not only the Newton and the covering radius of but also to determine the coset leader weight distribution. Moreover, providing the set of leader codewords we have a test-set for decoding by a gradient-like decoding algorithm. Another contribution of this article is the relation established between zero neighbors and leader codewords.

[1]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[2]  Tor Helleseth,et al.  Error-correction capability of binary linear codes , 2003, IEEE Transactions on Information Theory.

[3]  Geometŕıa y Topoloǵıa ALGEBRAIC STRUCTURE OF THE MINIMAL SUPPORT CODEWORDS SET OF SOME LINEAR CODES , 2010 .

[4]  Edgar Martínez-Moro,et al.  An algebraic view to gradient descent decoding , 2010, 2010 IEEE Information Theory Workshop.

[5]  Edgar Martínez-Moro,et al.  Algebraic structure of the minimal support codewords set of some linear codes , 2011, Adv. Math. Commun..

[6]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[7]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[8]  Toru Fujiwara,et al.  On Correctable Errors of Binary Linear Codes , 2010, IEEE Transactions on Information Theory.

[9]  N. J. A. Sloane,et al.  Coset Analysis of Reed Muller Codes Via Translates of Finite Vector Spaces , 1972, Inf. Control..

[10]  Edgar Martínez-Moro,et al.  A General Framework for Applying FGLM Techniques to Linear Codes , 2006, AAECC.

[11]  Alexander Barg,et al.  Minimal Vectors in Linear Codes , 1998, IEEE Trans. Inf. Theory.

[12]  Alexander Barg,et al.  Complexity Issues in Coding Theory , 1997, Electron. Colloquium Comput. Complex..

[13]  Håvard Raddum On the computation of coset leaders with high Hamming weight , 2004, Discret. Math..

[14]  Moni Naor,et al.  The hardness of decoding linear codes with preprocessing , 1990, IEEE Trans. Inf. Theory.

[15]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[16]  Edgar Martínez-Moro,et al.  Gröbner bases and combinatorics for binary codes , 2008, Applicable Algebra in Engineering, Communication and Computing.

[17]  Edgar Martínez-Moro,et al.  A Gröbner representation for linear codes , 2007 .

[18]  M. Borges-Quintana,et al.  On a Gröbner bases structure associated to linear codes , 2005 .