Iterative Devices Generating Infinite Words

We consider various TAG-like devices that generate one-way infinite words in real time. The simplest types of these devices are equivalent to iterative morphisms (also called substitutions), automatic sequences and iterative DGSM's. We consider also a few new types. Mainly we study the comparative power of these mechanisms and develop some techniques for proving that certain devices cannot produce a particular infinite word.

[1]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[2]  Jeffrey Shallit,et al.  Sur Des Points Fixes De Morphismes D'Un Monoïde Libre , 1989, RAIRO Theor. Informatics Appl..

[3]  J. Allouche,et al.  VIBRATIONAL MODES IN A ONE DIMENSIONAL "QUASI-ALLOY" : THE MORSE CASE , 1986 .

[4]  Juhani Karhumäki,et al.  Alternating Iteration of Morphisms and the Kolakovski Sequence , 1992 .

[5]  Tero Harju,et al.  On the Periodicity of Morphisms on Free Monoids , 1986, RAIRO Theor. Informatics Appl..

[6]  Alvy Ray Smith,et al.  Plants, fractals, and formal languages , 1984, SIGGRAPH.

[7]  J.-P. Allouche Finite Automata in 1-D and 2-D Physics , 1990 .

[8]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[9]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[10]  J. Allouche,et al.  Quasicrystal Ising chain and automata theory , 1986 .

[11]  Karel Culik,et al.  The Sequence Equivalence Problem for D0L Systems is Decidable , 1977, ICALP.

[12]  Arto Salomaa,et al.  On Infinite Words Obtained by Iterating Morphisms , 1982, Theor. Comput. Sci..

[13]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[14]  Juhani Karhumäki Two Theorems Concerning Recognizable N-Subsets of sigma* , 1976, Theor. Comput. Sci..

[15]  Jean Berstel,et al.  Properties of Infinite Words: Recent Result , 1989, STACS.

[16]  Jeffrey Shallit A Generalization of Automatic Sequences , 1988, Theor. Comput. Sci..

[17]  Jean-Jacques Pansiot,et al.  Decidability of Periodicity for Infinite Words , 1986, RAIRO Theor. Informatics Appl..

[18]  Clark Kimberling,et al.  Advanced Problems: 6279-6281 , 1979 .

[19]  Andrzej Ehrenfeucht,et al.  Subword Complexities of Various Classes of Deterministic Developmental Languages without Interactions , 1975, Theor. Comput. Sci..

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Karel Culik,et al.  Balancing Order and Chaos in Image Generation (Extended Abstract) , 1991, ICALP.

[22]  Arnold L. Rosenberg,et al.  Time-Restricted Sequence Generation , 1970, J. Comput. Syst. Sci..