SHS in the UK: Past, present, and future directions

[1]  Donald W. Brown,et al.  In situ observation of the formation of TiC from the elements by neutron diffraction , 2007 .

[2]  C. Perry,et al.  Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis , 2007 .

[3]  Malcolm L. H. Green,et al.  Rationalizing the catalytic performance of γ-alumina-supported Co(Ni)–Mo(W) HDS catalysts prepared by urea-matrix combustion synthesis , 2006 .

[4]  R. Rawlings,et al.  Multiphase niobium aluminides fabricated via reaction synthesis , 2006 .

[5]  E. Gaffet,et al.  Combustion wave structure during the MoSi2 synthesis by Mechanically-Activated Self-propagating High-temperature Synthesis (MASHS): In situ time-resolved investigations , 2006 .

[6]  I. Parkin,et al.  Modelling of the thermal processes that occur during laser sintering of reacting powder compositions , 2006 .

[7]  F. V. Kiryukhantsev-Korneev,et al.  Hard tribological Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N and Ti–Al–Si–B–N coatings , 2005 .

[8]  W. M. Rainforth,et al.  Lubricated sliding wear behaviour of aluminium alloy composites , 2005 .

[9]  A. Chrysanthou,et al.  An investigation of the self-propagating high-temperature synthesis of Ti(Si,Al)2 , 2005 .

[10]  C. Perry,et al.  Synthesis of SrCoxTixFe(12−2x)O19 through sol–gel auto-ignition and its characterisation , 2005 .

[11]  J. Kilner,et al.  Solution synthesis and electrical properties of K2NiF4 type LaSrAlO4 , 2004 .

[12]  T. Phan,et al.  Luminescent properties of Eu-doped Y2O3 nanophosphors , 2004 .

[13]  K. Nagaraja,et al.  Gel-combustion synthesis of La0.6Sr0.4Fe0.8Co0.2O3−δ and measurement of its humidity-dependent electrical conductivity , 2004 .

[14]  I. Parkin,et al.  Combustion synthesis of alkaline-earth substituted lanthanum manganites; LaMnO3, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3 , 2004 .

[15]  P. Shipway,et al.  Reaction synthesis of Cu-TiCx master-alloys for the production of copper-based composites , 2004 .

[16]  Q. Pankhurst,et al.  Self propagating high temperature synthesis of magnesium zinc ferrites (MgxZn1−xFe2O3): thermal imaging and time resolved X-ray diffraction experiments , 2004 .

[17]  S. Bradshaw,et al.  Microwave initiated self-propagating high temperature synthesis of materials , 2002 .

[18]  Jinhui Peng,et al.  Microwave ignited combustion synthesis of aluminium nitride , 2002 .

[19]  P. Shipway,et al.  Carbide stoichiometry in TiCx and Cu–TiCx produced by self-propagating high-temperature synthesis , 2002 .

[20]  M. Mackenzie,et al.  Solid state metathesis: synthesis of metal carbides from metal oxides , 2001 .

[21]  Jinhui Peng,et al.  Microwave Initiated Self-Propagating High-Temperature Synthesis of SiC , 2001 .

[22]  P. Shipway,et al.  Microstructure and abrasive wear behaviour of FeCr–TiC coatings deposited by HVOF spraying of SHS powders , 2001 .

[23]  P. Manoravi,et al.  Fabrication of La1−xSrxGa1−yMgyO3−(x+y)/2 thin films by pulsed laser ablation , 2000 .

[24]  Xinghong Zhang,et al.  In-situ combustion synthesis and densification of TiC-xNi cermets , 2000 .

[25]  Y. B. Lee,et al.  Self-propagating high-temperature synthesis of ZrB2 in the system ZrO2-B2O3-Fe2O3-Al , 2000 .

[26]  Q. Pankhurst,et al.  Combustion synthesis of chromium-substituted lithium ferrites Li0.5Fe2.5−xCrxO4 (x≤2.0): Rietveld analysis and magnetic measurements☆ , 1999 .

[27]  Q. Pankhurst,et al.  Self-propagating high-temperature synthesis of barium-chromium ferrites BaFe12-xCrxO19 (0 ≤ x ≤ 6.0) , 1999 .

[28]  P. Xiao,et al.  Mechanisms of the aluminium-iron oxide thermite reaction , 1999 .

[29]  Xiaodong He,et al.  Kinetic parameters of the thermal explosion reaction of Ni-Al-Fe system , 1999 .

[30]  M. Mackenzie,et al.  Solid state metathesis routes to transition metal carbides , 1999 .

[31]  Q. Pankhurst,et al.  Self propagating high temperature synthesis of BaFe12–xCrxO19 and Li0.5Fe2.5–xCrxO4 , 1999 .

[32]  Q. Pankhurst,et al.  Self-propagating high-temperature synthesis of lithium-chromium ferrites Li0.5Fe2.5-xCrxO4 , 1998 .

[33]  A. Bhattacharya,et al.  Combustion Synthesis, Powder Characteristics and Crystal Structure of Phases in Ce–Pr–O System , 1998 .

[34]  J. Klinowski,et al.  Solid-state NMR characterization of β-sialons from self-propagating high-temperature synthesis , 1996 .

[35]  I. Parkin Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways , 1997 .

[36]  A. Chrysanthou,et al.  Observation of intermetallic Ni3Ti whiskers during combustion synthesis reactions in the Ni-Ti-C system , 1995 .

[37]  R. Kaner,et al.  Metathetical Synthesis of Binary and Ternary Antiferromagnetic Gadolinium Pnictides (P, As, and Sb) , 1994 .

[38]  A. Chrysanthou,et al.  Characteristics of the combustion synthesis of TiC and Fe-TiC composites , 1994 .

[39]  I. Parkin,et al.  Metathesis routes to tin and lead chalcogenides , 1993 .

[40]  I. Parkin,et al.  Rapid synthesis of TiN, HfN and ZrN from solid-state precursors , 1993 .

[41]  I. Parkin,et al.  Low-temperature routes to early transition-metal nitrides , 1993 .

[42]  R. Kaner,et al.  Rapid synthesis of gallium phosphide and gallium arsenide from solid-state precursors , 1992 .