Rush Hour is PSPACE-complete, or "Why you should generously tip parking lot attendants"

[1]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[2]  Pierre McKenzie,et al.  Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..

[3]  Ming Li,et al.  Reversible Simulation of Irreversible Computation by Pebble Games , 1997, ArXiv.

[4]  Joseph Culberson,et al.  Sokoban is PSPACE-complete , 1997 .

[5]  Ming Li,et al.  Reversibility and adiabatic computation: trading time and space for energy , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Madhu Sudan,et al.  Motion planning on a graph , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[7]  Ralph C. Merkle,et al.  Two types of mechanical reversible logic , 1993 .

[8]  David L. Dill,et al.  Efficient self-timing with level-encoded 2-phase dual-rail (LEDR) , 1991 .

[9]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[10]  Alan T. Sherman,et al.  A Note on Bennett's Time-Space Tradeoff for Reversible Computation , 1990, SIAM J. Comput..

[11]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[12]  Paul Losleben,et al.  Advanced Research in VLSI , 1987 .

[13]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[14]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[15]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[16]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[17]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .