Maximizing Hamming Distance in Contraction of Permutation Arrays

A {\it permutation array} A is set of permutations on a finite set $\Omega$, say of size $n$. Given distinct permutations $\pi, \sigma\in \Omega$, we let $hd(\pi, \sigma) = |\{ x\in \Omega: \pi(x) \ne \sigma(x) \}|$, called the {\t Hamming distance} between $\sigma$ and $\tau$. Now let $hd(A) =$ min$\{ hd(\pi, \sigma): \pi, \sigma \in A \}$. For positive integers $n$ and $d$ with $d\le n$ we let $M(n,d)$ be the maximum number of permutations in any array $A$ satisfying $hd(A) \geq d$. There is an extensive literature on the function $M(n,d)$, motivated in part by applications to error correcting codes for message transmission over power lines. In this paper we consider the case where $q$ is a prime power with $q\equiv 1$ (mod $3$). For this case, we give lower bounds for $M(q-1,q-3)$ if $q\geq 7$, and when $q$ is odd for $M(q,q-3)$ if $q\geq 13$. These bounds are based on a {\it contraction} operation applied to the permutation groups $AGL(1,q)$ and $PGL(2,q)$. We obtain additional lower bounds on $M(n,d)$ for a finite number of pairs $(n,d)$ by applying the contraction operation to the Mathieu groups.

[1]  Patric R. J. Östergård,et al.  Permutation codes invariant under isometries , 2015, Des. Codes Cryptogr..

[2]  Noga Alon,et al.  Independence numbers of locally sparse graphs and a Ramsey type problem , 1996 .

[3]  Anxiao Jiang,et al.  Error-correcting codes for rank modulation , 2008, 2008 IEEE International Symposium on Information Theory.

[4]  L. J. Boya,et al.  Introduction to Sporadic Groups , 2011, 1101.3055.

[5]  J. Dixon,et al.  Permutation Groups , 1996 .

[6]  P. Dukes,et al.  Bounds on permutation codes of distance four , 2010 .

[7]  Sophie Huczynska Powerline communication and the 36 officers problem , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Roberto Montemanni,et al.  A new table of permutation codes , 2012, Des. Codes Cryptogr..

[9]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[10]  Charles J. Colbourn,et al.  An Application of Permutation Arrays to Block Ciphers , 2007 .

[11]  Bahram Honary,et al.  Power line communications: state of the art and future trends , 2003, IEEE Commun. Mag..

[12]  Anxiao Jiang,et al.  Rank modulation for flash memories , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  H. Weyl Permutation Groups , 2022 .

[14]  Gérard D. Cohen,et al.  Coding with Permutations , 1979, Inf. Control..

[15]  Thomas M. Thompson From error-correcting codes through sphere packings to simple groups , 1983 .

[16]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..