Allelopathy of Aquatic Autotrophs

Allelopathy in aquatic environments may provide a competitive advantage to angiosperms, algae, or cyanobacteria in their interaction with other primary producers. Allelopathy can influence the competition between different photoautotrophs for resources and change the succession of species, for example, in phytoplankton communities. Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats (marine and freshwater), and that all primary producing organisms (cyanobacteria, micro- and macroalgae as well as angiosperms) are capable of producing and releasing allelopathically active compounds. Although allelopathy also includes positive (stimulating) interactions, the majority of studies describe the inhibitory activity of allelopathically active compounds. Different mechanisms operate depending on whether allelopathy takes place in the open water (pelagic zone) or is substrate associated (benthic habitats). Allelopathical interactions are especially common in fully aquatic species, such as submersed macrophytes or benthic algae and cyanobacteria. The prevention of shading by epiphytic and planktonic primary producers and the competition for space may be the ultimate cause for allelopathical interactions. Aquatic allelochemicals often target multiple physiological processes. The inhibition of photosynthesis of competing primary producers seems to be a frequent mode of action. Multiple biotic and abiotic factors determine the strength of allelopathic interactions. Bacteria associated with the donor or target organism can metabolize excreted allelochemicals. Frequently, the impact of surplus or limiting nutrients has been shown to affect the overall production of allelochemicals and their effect on target species. Similarities and differences of allelopathic interactions in marine and freshwater habitats as well as between the different types of producing organisms are discussed. Referee: Dr. Friedrich Jüttner, Universität Zürich-Limnologische Station, Institut für Pflanzen biologie, Universität Zürich, Seestrasse 187, Ch-8802 Klichberg ZH, Switzerland

[1]  J. Komárková,et al.  Enhanced Activity of Alkaline Phosphatases - Phytoplankton Response to Epilimnetic Phosphorus Depletion , 1993 .

[2]  E. Gross,et al.  Impact of Polyphenols on Growth of the Aquatic Herbivore Acentria ephemerella , 2002, Journal of Chemical Ecology.

[3]  E. Zettler,et al.  Chemical Defences in Aquatic Plants , 1986 .

[4]  K. Michalek-Wagner,et al.  Effects of Bleaching on Secondary Metabolite Chemistry of Alcyonacean Soft Corals , 2000, Journal of Chemical Ecology.

[5]  Inderjit,et al.  Laboratory Bioassay for Phytotoxicity , 2001, Agronomy Journal.

[6]  A. Pollio,et al.  Dihydrophenanthrene and Phenanthrene Mimics of Natural Compounds—Synthesis and Antialgal Activity , 2000, Journal of Chemical Ecology.

[7]  F. Jüttner,et al.  Toxicological analysis of the marine cyanobacterium Nodularia harveyana , 1998, Journal of Applied Phycology.

[8]  J. Barko,et al.  Sediment-based nutrition of submersed macrophytes , 1981 .

[9]  A. Fiorentino,et al.  Effusides I-V: 9,10-dihydrophenanthrene glucosides from Juncus effusus , 1995 .

[10]  O. Alexandrova,et al.  Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium) , 1991, Journal of Applied Phycology.

[11]  I. R. Johnson,et al.  Mathematical modelling of residue allelopathy: the effects of intrinsic and extrinsic factors , 2002, Plant and Soil.

[12]  S. Kjelleberg,et al.  Do marine natural products interfere with prokaryotic AHL regulatory systems , 1997 .

[13]  F. Jüttner,et al.  Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria) , 1997 .

[14]  Martin Wahl,et al.  Marine epibiosis. I. Fouling and antifouling: some basic aspects , 1989 .

[15]  E. Haslam Plant Polyphenols: Vegetable Tannins Revisited , 1989 .

[16]  J. Chattopadhyay,et al.  A delay differential equations model of plankton allelopathy. , 1998, Mathematical biosciences.

[17]  M. S. Ferguson,et al.  Growth of Platyfish (Platypoecilus maculatus) Free from Bacteria and Other Micro'organisms , 1942 .

[18]  J. Grace,et al.  Production biology of Eurasian watermilfoil (Myriophyllum spicatum L. ): A review , 1978 .

[19]  Linda M. Sugg,et al.  NO EVIDENCE FOR AN ALLELOPATHIC ROLE OF OKADAIC ACID AMONG CIGUATERA‐ASSOCIATED DINOFLAGELLATES , 1999 .

[20]  K. Sand‐Jensen,et al.  Microsensor Analysis of Oxygen in the Rhizosphere of the Aquatic Macrophyte Littorella uniflora (L.) Ascherson , 1994, Plant physiology.

[21]  M. Mjelde,et al.  Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude , 1997 .

[22]  T. Smayda,et al.  Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea , 1997 .

[23]  H. Molisch Der Einfluss einer Pflanze auf die Andere, Allelopathie , 1938, Nature.

[24]  Derek Martin,et al.  The relative sensitivity of algae to decomposing barley straw , 1999, Journal of Applied Phycology.

[25]  I. R. Johnson,et al.  Mathematical modelling of allelopathy: II. The dynamics of allelochemicals from living plants in the environment , 2003 .

[26]  J. Griffith Occurrence of aggressive mechanisms during interactions between soft corals (Octocorallia:Alcyoniidae) and other corals on the Great Barrier Reef, Australia , 1997 .

[27]  A. Fiorentino,et al.  Effect of ent-Labdane Diterpenes from Potamogetonaceae on Selenastrum capricornutum and Other Aquatic Organisms , 2002, Journal of Chemical Ecology.

[28]  S. Wium-Andersen Allelopathy among aquatic plants , 1987 .

[29]  N. Ohad,et al.  A similar structure of the herbicide binding site in photosystem II of plants and cyanobacteria is demonstrated by site specific mutagenesis of the psbA gene , 2004, Photosynthesis Research.

[30]  Jürgen Weckesser,et al.  Microcystins (hepatotoxic heptapeptides) in german fresh water bodies , 1999 .

[31]  J. Haney,et al.  Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth , 2004, Hydrobiologia.

[32]  T. Nishijima,et al.  Inhibition of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by bacteria from Hiroshima Bay, Japan , 2002 .

[33]  M. J. Reigosa,et al.  The physiology of allelochemical action: clues and views. , 2002 .

[34]  S. Bertilsson,et al.  Photochemical reactivity of aquatic macrophyte leachates: abiotic transformations and bacterial response , 2001 .

[35]  Influence of Myriophyllum spicatum L. on the species composition, biomass and primary productivity of phytoplankton , 1986 .

[36]  R. Cannell,et al.  Purification and characterization of pentagalloylglucose, and alpha-glucosidase inhibitor/antibiotic from the freshwater green alga Spirogyra varians. , 1988, The Biochemical journal.

[37]  E. Gaspar,et al.  Identification of active compounds in wheat straw extracts with allelopathic activity by HRGC-MS and HRGC-FTIR , 1990 .

[38]  D. Pandey,et al.  Inhibitory effect of parthenium (Parthenium hysterophorus L.) residue on growth of water hyacinth (Eichhornia crassipes mart solms.) I. Effect of leaf residue , 1993, Journal of Chemical Ecology.

[39]  Kazuki Saito,et al.  Inhibitory Substances from Myriophyllum brasiliense on Growth of Blue-Green Algae , 1989 .

[40]  M. T. Gallardo,et al.  Inhibition of Water Fern Salvinia minima by Cattail (Typha domingensis) Extracts and by 2-Chlorophenol and Salicylaldehyde , 1998, Journal of Chemical Ecology.

[41]  J. Priscu,et al.  Antarctic Communities: Species, Structure and Survival , 1998 .

[42]  M. Littler,et al.  BLADE ABANDONMENT/PROLIFERATION: A NOVEL MECHANISM FOR RAPID EPIPHYTE CONTROL IN MARINE MACROPHYTES , 1999 .

[43]  F. Einhellig Mechanism of action of allelochemicals in allelopathy. , 1995 .

[44]  J. A. Bloomfield,et al.  The decline of native vegetation under dense Eurasian watermilfoil canopies. , 1991 .

[45]  A. Mallik,et al.  Allelopathic Potential of Aquatic Plants Associated with Wild Rice: II. Isolation and Identification of Allelochemicals , 2004, Journal of Chemical Ecology.

[46]  U. Lindequist,et al.  Cyanobacteria--a potential source of new biologically active substances. , 1999, Journal of biotechnology.

[47]  G. Weithoff,et al.  Problems in estimating phytoplankton nitrogen limitation in Shallow Eutrophic Lakes , 1999, Hydrobiologia.

[48]  L. Anderson,et al.  Nutrient Limitation in Myriophyllum aquaticum , 1993 .

[49]  M. Scheffer,et al.  Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, the Netherlands. , 1998 .

[50]  P. Wiener Antibiotic production in a spatially structured environment , 2000 .

[51]  A. Fiorentino,et al.  9,10-dihydrophenanthrene metabolites from Juncus effusus L. , 1992 .

[52]  G. Pinto,et al.  Potential allelochemicals fromPistia stratiotes L. , 1991, Journal of Chemical Ecology.

[53]  Z. Mohamed Allelopathic activity of Spirogyra sp.: stimulating bloom formation and toxin production by Oscillatoria agardhii in some irrigation canals, Egypt , 2002 .

[54]  S. Duke,et al.  Allelochemicals as herbicides. , 2002 .

[55]  J. Madsen,et al.  Biologically active sulphur compounds from the green alga Chara globularis , 1980 .

[56]  F. Grolig,et al.  Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast , 1995, The Journal of cell biology.

[57]  C. Hartog A treatise on limnology. Vol. III. Limnological botany: G.E. Hutchinson. John Wiley & Sons, New York, London, Sydney, Toronto, 1976, 660 pp., ISBN 471-42574-5, £16.75 , 1976 .

[58]  S. Kjelleberg,et al.  Chemical Mediation of Surface Colonization , 2001 .

[59]  I. Blindow,et al.  Allelopathic limitation of algal growth by macrophytes , 1994 .

[60]  M. Hosomi,et al.  Growth Inhibition of Blue-green Algae by Allelopathic Effects of Macrophytes , 1997 .

[61]  Autotoxic inhibition of seed germination by Typha latifolia: an evaluation , 1983, Oecologia.

[62]  C. W. Smith,et al.  Phenolic acid and condensed tannin concentrations of six cotton genotypes , 1995 .

[63]  P. Sammarco,et al.  Toxic effects of alcyonacean diterpenes on scleractinian corals , 1995 .

[64]  H. Sano,et al.  Halymecins, new antimicroalgal substances produced by fungi isolated from marine algae. , 1996, The Journal of antibiotics.

[65]  A. Fiorentino,et al.  A new dimeric 9,10-dihydrophenanthrenoid from the rhizome of Juncus acutus , 2002 .

[66]  Ashok Kumar,et al.  Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa , 2001 .

[67]  Leonardo Guzman,et al.  Comparison of allelopathic properties in three toxic Alexandrium species , 1999 .

[68]  O. Skulberg Microalgae as a source of bioactive molecules – experience from cyanophyte research , 2000, Journal of Applied Phycology.

[69]  F. K. Gleason,et al.  A second algicidal natural product from the cyanobacterium, Scytonema hofmanni , 1994 .

[70]  J. Stevenson,et al.  Effects of different submersed macrophytes on sediment biogeochemistry , 1997 .

[71]  P. Sammarco,et al.  Effects of soft corals on scleractinian coral recruitment. I:Directional allelopathy and inhibition of settlement , 1995 .

[72]  R. England,et al.  Elucidation and optimization of the medium constituents controlling antibiotic production by the cyanobacterium Nostoc muscorum. , 1991, Enzyme and microbial technology.

[73]  P. Blomqvist Late summer phytoplankton responses to experimental manipulations of nutrients and grazing in unlimed and limed Lake Njupfatet, central Sweden , 1996 .

[74]  F. Jüttner,et al.  Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity , 1996 .

[75]  R. Zimmerman,et al.  The antifouling activity of natural and synthetic phenol acid sulphate esters , 1993 .

[76]  F. G. Plumley Marine algal toxins: Biochemistry, genetics, and molecular biology , 1997 .

[77]  A. Sánchez-Moreiras,et al.  Ecophysiological approach in Allelopathy , 1999 .

[78]  R. Carignan,et al.  Phosphorus Sources for Aquatic Weeds: Water or Sediments? , 1980, Science.

[79]  S. Egan,et al.  Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. , 2001, International journal of systematic and evolutionary microbiology.

[80]  S. Crawford Chemical, physical and biological changes associated with chara succession in farm ponds , 1977, Hydrobiologia.

[81]  M. Lumb Antibiotic Production , 2002 .

[82]  M. Scheffer The effect of aquatic vegetation on turbidity; how important are the filter feeders? , 1999, Hydrobiologia.

[83]  A. Nahrstedt,et al.  Resorcinol in exudates ofNuphar lutea , 1996, Journal of Chemical Ecology.

[84]  R. Wetzel Extracellular Enzymatic Interactions: Storage, Redistribution, and Interspecific Communication , 1991 .

[85]  P. Jensen,et al.  Solanapyrones e-g, antialgal metabolites produced by a marine fungus , 1998 .

[86]  M. Scheffer The effect of aquatic vegetation on turbidity; how important are the filter feeders? , 1999 .

[87]  Michael A. Borowitzka,et al.  Microalgae as sources of pharmaceuticals and other biologically active compounds , 1995, Journal of Applied Phycology.

[88]  D. Casamatta,et al.  Sensitivity of Two Disjunct Bacterioplankton Communities to Exudates from the Cyanobacterium Microcystis aeruginosa Kützing , 2000, Microbial Ecology.

[89]  A. Linden,et al.  Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga. , 1999, Phytochemistry.

[90]  M. Wahl,et al.  Marine epibiosis , 1990, Oecologia.

[91]  C. Hellio,et al.  Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France , 2000, Applied Microbiology and Biotechnology.

[92]  Jeffrey D. Weidenhamer,et al.  In search of allelopathy in the Florida scrub: The role of terpenoids , 1994, Journal of Chemical Ecology.

[93]  S. Pflugmacher Possible allelopathic effects of cyanotoxins, with reference to microcystin‐LR, in aquatic ecosystems , 2002, Environmental toxicology.

[94]  I. Ridge,et al.  Algal growth control by terrestrial leaf litter: a realistic tool? , 1999, Hydrobiologia.

[95]  F. K. Gleason,et al.  Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp. , 1984, Archives of Microbiology.

[96]  G. Velde,et al.  Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? , 2000 .

[97]  S. Kogan,et al.  Interaction of ceratophyllum demersum and some blue green algae , 1972 .

[98]  S. N. Bagchi Structure and site of action of an algicide from a cyanobacterium, Oscillatoria late-virens , 1995 .

[99]  D. Pandey,et al.  Inhibitory effect of parthenium (Parthenium hysterophorus L.) residue on growth of water hyacinth (Eichhornia crassipes Mart Solms.) II. Relative effect of flower, leaf, stem, and root residue , 1993, Journal of Chemical Ecology.

[100]  R. Nys,et al.  Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra , 1999 .

[101]  M. Álvarez-Cobelas,et al.  Phytoplankton structure and dynamics in a semiarid wetland, the National Park Las Tablas de Daimiel (Spain) , 2000 .

[102]  L. McCook,et al.  Competition between corals and algae on coral reefs: a review of evidence and mechanisms , 2001, Coral Reefs.

[103]  D. A. Francko,et al.  Allelopathic Potential of Nelumbo lutea (Willd.) Pers. to Alter Growth of Myriophyllum spicatum L. and Potamogeton pectinatus L. , 1997 .

[104]  K. Keating,et al.  Blue-Green Algal Inhibition of Diatom Growth: Transition from Mesotrophic to Eutrophic Community Structure , 1978, Science.

[105]  H. Kato‐Noguchi,et al.  Assessment of Allelopathic Potential of Root Exudate of Rice Seedlings , 2001, Biologia Plantarum.

[106]  P. Sammarco Comments on coral reef regeneration, bioerosion, biogeography, and chemical ecology: future directions , 1996 .

[107]  Dale G. Nagle and Valerie J. Paul PRODUCTION OF SECONDARY METABOLITES BY FILAMENTOUS TROPICAL MARINE CYANOBACTERIA: ECOLOGICAL FUNCTIONS OF THE COMPOUNDS , 1999 .

[108]  K. Ishida,et al.  Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. , 2000, The Journal of organic chemistry.

[109]  G. Pinto,et al.  Synthesis and Antialgal Activity of Dihydrophenanthrenes and Phenanthrenes II: Mimics of Naturally Occurring Compounds in Juncus effusus , 2001, Journal of Chemical Ecology.

[110]  A. Kaplan,et al.  Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic mechanism , 2002 .

[111]  J. Shapiro Chemical and Biological Studies on the Yellow Organic Acids of Lake Water1 , 1957 .

[112]  Yong-Ki Hong,et al.  Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae , 2000, Journal of Applied Phycology.

[113]  R. Moore,et al.  Cyclic peptides and depsipeptides from cyanobacteria: A review , 1996, Journal of Industrial Microbiology.

[114]  S. Jakubowski,et al.  Biotechnological Investigation for the Prevention of Marine Biofouling II. Blue-Green Algae as Potential Producers of Biogenic Agents for the Growth Inhibition of Microfouling Organisms , 1999 .

[115]  E. Flores,et al.  Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains , 1986, Archives of Microbiology.

[116]  A. Trebst,et al.  Structure Activity Correlation of Herbicides Affecting Plastoquinone Reduction by Photosystem II: Electron Density Distribution in Inhibitors and Plastoquinone Species , 1984 .

[117]  F. K. Gleason The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracilis strain Z , 1990 .

[118]  J. Garnier,et al.  Practical approaches to algal excretion , 1992 .

[119]  F. K. Gleason,et al.  Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms , 1986 .

[120]  J. Barko,et al.  Sediment-related mechanisms of growth limitation in submersed macrophytes , 1986 .

[121]  J. Newman,et al.  Control of Microcystis aeruginosa by decomposing barley straw , 1993 .

[122]  G. Pinto,et al.  Action of antialgal compounds fromJuncus effusus L. onSelenastrum capricornutum , 1996, Journal of Chemical Ecology.

[123]  A. Fiorentino,et al.  Cycloartane glucosides from Juncus effusus. , 1994, Phytochemistry.

[124]  F. Jüttner,et al.  FISCHERELLIN, A NEW ALLELOCHEMICAL FROM THE FRESHWATER CYANOBACTERIUM FISCHERELLA MUSCICOLA 1 , 1991 .

[125]  J. Porter,et al.  Allelochemical Interactions Between Sponges and Corals , 1988 .

[126]  F. Sarhan,et al.  Ecological significance of phenolic compounds of Myriophyllum spicatum: With 2 figures and 4 tables in the text , 1981 .

[127]  Erik Jeppesen,et al.  The Structuring Role of Submerged Macrophytes in Lakes , 1998, Ecological Studies.

[128]  Manjula K. Saxena,et al.  Aqueous Leachate of Lantana camara Kills Water Hyacinth , 2000, Journal of Chemical Ecology.

[129]  E. Gross,et al.  Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L. , 1994 .

[130]  C. Legrand,et al.  Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? , 2001 .

[131]  A. Hasler,et al.  Demonstration of the Antagonistic Action of Large Aquatic Plants on Algae and Rotifers , 1949 .

[132]  D. Häder,et al.  Effects on aquatic ecosystems , 1998 .

[133]  M. Farago,et al.  The water hyacinth : an environmental friend or pest? A review , 1999 .

[134]  G. Houen,et al.  Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales) , 1982 .

[135]  H. Flessa Plant-induced changes in the redox potential of the rhizospheres of the submerged vascular macrophytes Myriophyllum verticillatum L. and Ranunculus circinatus L. , 1994 .

[136]  Yong-Ki Hong,et al.  Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis , 2001, Journal of Applied Phycology.

[137]  P. G. Harrison,et al.  Reductions in photosynthetic carbon uptake in epiphytic diatoms by water-soluble extracts of leaves of Zostera marina , 1985 .

[138]  S. McNaughton Autotoxic Feedback in Relatin to Germination and Seedling Growth in Typha Latifolia , 1968 .

[139]  G. Pinto,et al.  Allelochemical activity of phenylpropanes from Acorus gramineus , 1989 .

[140]  R. Strasser,et al.  Action of the allelochemical, fischerellin A, on photosystem II. , 1998, Biochimica et biophysica acta.

[141]  P. Steinberg,et al.  In situ exudation of phlorotannins by the sublittoral kelp Ecklonia radiata , 1994 .

[142]  R. Lanzetta,et al.  Phenalene metabolites from eichhornia crassipes , 1992 .

[143]  M. Søndergaard Kinetics of extracellular release of 14C-labelled organic carbon by submerged macrophytes , 1981 .

[144]  A. Molinaro,et al.  (20S)-4α-methyl-24-methylenecholest-7-en-3β-ol, an allelopathic sterol from Typha latifolia , 1990 .

[145]  S. Egan,et al.  Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. , 2001, FEMS microbiology ecology.

[146]  S. Rice,et al.  Bacterial signals and antagonists: the interaction between bacteria and higher organisms. , 1999, Journal of molecular microbiology and biotechnology.

[147]  E. Gross Allelopathy in benthic and littoral areas : case studies on allelochemicals from benthic cyanobacteria and submersed macrophytes , 1999 .

[148]  A. Fiorentino,et al.  Antialgal furano-diterpenes from Potamogeton natans L. , 2001, Phytochemistry.

[149]  J. W. Wooten,et al.  Allelopathic potential ofnuphar lutea (L.) Sibth. & Sm. (Nymphaeaceae) , 1991, Journal of Chemical Ecology.

[150]  P. G. Harrison,et al.  Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves , 1980 .

[151]  M. Hosomi,et al.  Control of algal growth by macrophytes and macrophyte-extracted bioactive compounds , 1996 .

[152]  K. Wood,et al.  The Search for Exudates from Eurasian Watermilfoil and Hydrilla , 2002 .

[153]  J. Streibig,et al.  Laboratory Bioassay for Phytotoxicity: An Example from Wheat Straw , 2001 .

[154]  P. K. Tapaswi,et al.  Effects of environmental fluctuation on plankton allelopathy , 1999 .

[155]  R. Lewis,et al.  Origin and transfer of toxins involved in ciguatera. , 1993, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[156]  E. Gross,et al.  Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum , 1996 .

[157]  G. Pinto,et al.  In vitro algal growth inhibition by phytotoxins ofTypha latifolia L. , 1990, Journal of Chemical Ecology.

[158]  C. Hellio,et al.  Screening of Marine Algal Extracts for Anti-settlement Activities against Microalgae and Macroalgae , 2002 .

[159]  S. Fish,et al.  Antimicrobial and cytotoxic activity produced by an isolate of the thermotolerant cyanobacterium (blue-green alga) Phormidium sp. , 1994 .

[160]  M. Scheffer,et al.  Alternative equilibria in shallow lakes. , 1993, Trends in ecology & evolution.

[161]  W. M. Lewis Evolutionary Interpretations of Allelochemical Interactions in Phytoplankton Algae , 1986, The American Naturalist.

[162]  M. Lavorgna,et al.  Phenanthrenoids from the wetland Juncus acutus. , 2002, Phytochemistry.

[163]  A. Nicklisch,et al.  ALLELOPATHIC GROWTH INHIBITION OF SELECTED PHYTOPLANKTON SPECIES BY SUBMERGED MACROPHYTES1 , 2002 .

[164]  R. Lanzetta,et al.  A bioactive benzoindenone from Eichhornia crassipes solms , 1991 .

[165]  I. Makhadmeh,et al.  Ecophysiology of the plant-rhizosphere system , 2001 .

[166]  R. Quackenbush,et al.  HPLC determination of phenolic acids in the water-soluble extract of Zostera marina L. (eelgrass) , 1986 .

[167]  M. Littler,et al.  Epizoic red alga allelopathic (?) to a Caribbean coral , 1997 .

[168]  Chung-Shih Tang,et al.  Plant Stress and Allelopathy , 1994 .

[169]  S. N. Bagchi,et al.  Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. , 2001, The New phytologist.

[170]  F. Jüttner,et al.  Factors influencing the allelopathic activity of the planktonic cyanobacterium Trichormus doliolum , 1996 .

[171]  Molly Best,et al.  Growth of Myriophyllum: Sediment or Lake Water as the Source of Nitrogen and Phosphorus , 1978 .

[172]  A. Fiorentino,et al.  Lactone diterpenes from the aquatic plant Potamogeton natans. , 2001, Phytochemistry.

[173]  S. Nakai Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa , 2000 .

[174]  R. Carignan,et al.  Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton1,1 , 1982 .

[175]  S. Duquesne,et al.  Effect of nutrient enrichment on the complementary (secondary) metabolite composition of the soft coral Sarcophyton ehrenbergi (Cnidaria: Octocorallia: Alcyonaceae) of the Great Barrier Reef , 2000 .

[176]  Jan E. Vermaat,et al.  Lake Veluwe, a Macrophyte-dominated System under Eutrophication Stress , 1994, Geobotany.

[177]  Jiunn‐Tzong Wu,et al.  Evidence of allelochemical activity in subtropical cyanobacterial biofilms of Taiwan , 2000 .

[178]  M. Gallardo-Williams,et al.  Essential fatty acids and phenolic acids from extracts and leachates of southern cattail (Typha domingensis P.). , 2002, Phytochemistry.

[179]  D. Keeney,et al.  Nitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15N by shoots and roots , 1976 .

[180]  Geoffrey D. Smith,et al.  Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix , 2000, Journal of Applied Phycology.

[181]  Ravinder Kumar Kohli,et al.  Autotoxicity: Concept, Organisms, and Ecological Significance , 1999 .

[182]  P. Sammarco,et al.  Preliminary evidence for directional allelopathic effects of the soft coral Sinularia flexibilis (Alcyonacea: Octocorallia) on scleractinian coral recruitment , 1995 .

[183]  M. Ragan,et al.  Gallotannins of the freshwater green alga Spirogyra sp. , 1985 .

[184]  R. Nys,et al.  Chemically mediated interactions between the red algaPlocamium hamatum (Rhodophyta) and the octocoralSinularia cruciata (Alcyonacea) , 1991 .

[185]  G. Phillips,et al.  A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters , 1978 .

[186]  A. Molinaro,et al.  Dimeric phenalene metabolites from Eichhornia crassipes , 1992 .

[187]  W. H. Sun,et al.  Sterilized culture of water hyacinth and its application in the study of allelopathic effect[s] on algae. , 1990 .

[188]  B. Sorrell,et al.  On the difficulties of measuring oxygen release by root systems of wetland plants. , 1994 .

[189]  A. Owsianka,et al.  Results of a Large Scale Screen of Microalgae for the Production of Protease Inhibitors , 1988, Planta medica.

[190]  B. Gopal,et al.  Allelopathic influence of Hydrilla verticillata (L.F.) Royle on the distribution of Ceratophyllum species , 1983 .

[191]  R. Wetzel,et al.  SECRETION OF DISSOLVED ORGANIC CARBON AND NITROGEN BY AQUATIC MACROPHYTES. , 1971 .

[192]  W. Silvester,et al.  Growth interactions among blue-green (Anabaena Oscillarioides, Microcystis aeruginosa) and green (Chlorella sp.) algae , 1979, Hydrobiologia.

[193]  J. Haney,et al.  Inhibition of Chlorella growth by the lipids of cyanobacterium Microcystis aeruginosa , 1996, Hydrobiologia.

[194]  R. J. Willis The historical bases of the concept of allelopathy , 1985 .

[195]  A. Fiorentino,et al.  Antialgal ent-labdane diterpenes from Ruppia maritima. , 2000, Phytochemistry.

[196]  I. Jasser The influence of macrophytes on a phytoplankton community in experimental conditions , 1995, Hydrobiologia.

[197]  W. Armstrong,et al.  Formation of Aerenchyma and the Processes of Plant Ventilation in Relation to Soil Flooding and Submergence , 1999 .

[198]  J. Pillinger,et al.  Role of phenolic compounds in the antialgal activity of barley straw , 1994, Journal of Chemical Ecology.

[199]  T. Kawaguchi,et al.  Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta) , 1998 .

[200]  A. Owsianka,et al.  Microalgae and cyanobacteria as a source of glycosidase inhibitors. , 1987, Journal of general microbiology.

[201]  J. Mclachlan,et al.  ALGAL INHIBITION BY YELLOW ULTRAVIOLET-ABSORBING SUBSTANCES FROM FUCUS VESICULOSUS , 1964 .

[202]  Sweatman,et al.  Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors. , 2000, Journal of experimental marine biology and ecology.

[203]  Inderjit,et al.  Allelopathic effect of cyanobacterial inoculum on soil characteristics and cereal growth , 1997 .

[204]  V C Srivastava,et al.  Inhibitory metabolites production by the cyanobacterium Fischerella muscicola. , 1999, Microbiological research.

[205]  G. E. Hutchinson,et al.  A treatise on limnology. , 1957 .

[206]  A. Molinaro,et al.  A bioactive dihydrodibenzoxepin from Juncus effusus , 1993 .

[207]  A. Cofrancesco,et al.  Biological control of aquatic and wetland weeds in the southeastern United States. , 1990 .

[208]  R. Wetzel Limnology: Lake and River Ecosystems , 1975 .

[209]  A. Krieger-Liszkay,et al.  Polyphenolic Allelochemicals from the Aquatic Angiosperm Myriophyllum spicatumInhibit Photosystem II1 , 2002, Plant Physiology.

[210]  D. Schindler Evolution of phosphorus limitation in lakes. , 1977, Science.

[211]  T. Nishijima,et al.  Promotion of cyst formation in the toxic dinoflagellate Alexandrium (Dinophyceae) by natural bacterial assemblages from Hiroshima Bay, Japan , 1999 .

[212]  J. Huppatz Quantifying the Inhibitor-Target Site Interactions of Photosystem II Herbicides , 1996, Weed Science.

[213]  A. Kaplan,et al.  Dinoflagellate-Cyanobacterium Communication May Determine the Composition of Phytoplankton Assemblage in a Mesotrophic Lake , 2002, Current Biology.

[214]  P. Sammarco,et al.  Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). , 1998, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[215]  C. Durance,et al.  Seasonal variation in phenolic content of eelgrass shoots , 1989 .

[216]  A. Linden,et al.  Nostocyclamide: A New Macrocyclic, Thiazole-Containing Allelochemical from Nostoc sp. 31 (Cyanobacteria). , 1996 .

[217]  Dayan,et al.  Natural products as sources of herbicides: current status and future trends , 2000 .

[218]  Østensvik,et al.  Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria – a comparative study of bacterial bioassays , 1998, Journal of applied microbiology.

[219]  C. Williamson What role does UV‐B radiation play in freshwater ecosystems? , 1995 .

[220]  W. Carmichael,et al.  Cyanobacteria secondary metabolites--the cyanotoxins. , 1992, The Journal of applied bacteriology.

[221]  H. H. Cheng Characterization of the Mechanisms of Allelopathy: Modeling and Experimental Approaches , 1994 .

[222]  Geoffrey D. Smith,et al.  Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants , 1999, Journal of Applied Phycology.

[223]  S. Elakovich,et al.  Structures and allelopathic effects ofNuphar alkaloids: Nupharolutine and 6,6′-dihydroxythiobinupharidine , 1996, Journal of Chemical Ecology.

[224]  Jiunn‐Tzong Wu,et al.  Algicidal Effect of Peridinium bipes on Microcystis aeruginosa , 1998, Current Microbiology.

[225]  F. K. Gleason,et al.  Activity of the natural algicide, cyanobacterin, on angiosperms. , 1986, Plant physiology.

[226]  H. Fox,et al.  Massive corals are regularly spaced: pattern in a complex assemblage of corals , 1997 .

[227]  M. Hosomi,et al.  Growth Inhibition of Blue-green Algae by Allelopathic Effects of Macrophytes , 1997 .

[228]  A. Windust,et al.  The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae , 1996 .

[229]  K. Keating,et al.  Allelopathic Influence on Blue-Green Bloom Sequence in a Eutrophic Lake , 1977, Science.

[230]  M. Hunter,et al.  Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. , 2000, Environmental microbiology.

[231]  M. Harlin,et al.  Allelochemistry in marine macroalgae , 1987 .

[232]  P. Steinberg,et al.  Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata , 1997, Oecologia.

[233]  J. Lovett,et al.  Allelopathy, chemical communication, and plant defense , 1989, Journal of Chemical Ecology.

[234]  Hans Molisch,et al.  einfluss einer pflanze auf die andere, allelopathie , 1937 .

[235]  Y. Waisel,et al.  Inter-relationships between Najas marina L. and three other species of aquatic macrophytes , 1985, Hydrobiologia.

[236]  Geoffrey D. Smith,et al.  Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria , 1998, Journal of Applied Phycology.

[237]  S. Weisner,et al.  Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes , 1997, Oecologia.

[238]  S. Fish,et al.  Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue-green algae) , 1994, World journal of microbiology & biotechnology.

[239]  W. Dodds Community interactions between the filamentous alga Cladophora glomerata (L.) Kuetzing, its epiphytes, and epiphyte grazers , 1991, Oecologia.

[240]  R. Wetzel Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard-water lakes: With 8 figures and 10 tables in the text , 1969 .

[241]  H. Brix,et al.  Oxygen stress in wetland plants: Comparison of de-oxygenated and reducing root environments , 1996 .

[242]  R. Wetzel,et al.  Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae). , 2000, American journal of botany.

[243]  B. Gunning,et al.  The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell. , 1999, American journal of botany.

[244]  G. Zapesochnaya,et al.  Plant polyphenols , 1965, Chemistry of Natural Compounds.

[245]  U. Blum,et al.  Evidence for Inhibitory Allelopathic Interactions Involving Phenolic Acids in Field Soils: Concepts vs. an Experimental Model , 1999 .

[246]  F. K. Gleason,et al.  Effect of the natural algicide, cyanobacterin, on a herbicide-resistant mutant of anacystis nidulans R2 , 1986 .

[247]  R. Chróst Microbial Enzymes in Aquatic Environments , 1991, Brock/Springer Series in Contemporary Bioscience.

[248]  E. Gross Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. , 2000 .

[249]  S. N. Bagchi,et al.  Effect of an antibiotic from Oscillatoria sp. on phytoplankters, higher plants and mice , 1992 .

[250]  María Jesús Sánchez Soler Las Tablas de Daimiel , 1999 .

[251]  P. Monaco,et al.  Cycloartane triterpenes from Juncus effusus , 1994 .

[252]  M. Hunter,et al.  Algal Extracellular Products Suppress Anabaena flos-aquae Heterocyst Spacing , 2001, Microbial Ecology.

[253]  S. Wen Allelochemicals from Root Exudates of Water Hyacinth (Eichhornis crassipes) , 1993 .

[254]  C. Forsberg,et al.  Absence of allelopathic effects of Chara on phytoplankton in situ , 1990 .

[255]  B. Neilan,et al.  Ecological and molecular investigations of cyanotoxin production. , 2001, FEMS microbiology ecology.

[256]  A. Mallik,et al.  Allelopathic Potential of Aquatic Plants Associated with Wild Rice (Zizania palustris): I. Bioassay with Plant and Lake Sediment Samples , 2004, Journal of Chemical Ecology.

[257]  R. Hough,et al.  Photosynthesis, Photorespiration, and Organic Carbon Release in Nymphaea tuberosa Paine and Nuphar variegatum Engelm , 1990 .

[258]  A. Lombana,et al.  A review of issues in seagrass seed dormancy and germination : implications for conservation and restoration , 2000 .

[259]  S. Rice,et al.  Genetic and chemical tools for investigating signaling processes in biofilms. , 2001, Methods in enzymology.

[260]  E. Donk,et al.  Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms , 2002 .

[261]  L. Chao,et al.  Structured habitats and the evolution of anticompetitor toxins in bacteria. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[262]  D. Keeney,et al.  Nitrogen nutrition of Myriophyllum spicatum: variation of plant tissue nitrogen concentration with season and site in Lake Wingra , 1976 .

[263]  George P. Filzgerald SOME FACTORS IN THE COMPETITION OR ANTAGONISM AMONG BACTERIA, ALGAE, AND AQUATIC WEEDS , 1969, Journal of phycology.

[264]  W. Francke,et al.  Isolation, identification and determination of the absolute configuration of Fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret) , 1997 .