Simple Relationship Analysis between L-Band Backscattering Intensity and the Stand Characteristics of Sugi ( Cryptomeria japonica ) and Hinoki ( Chamaecyparis obtusa ) Trees

In this study, we have performed an analysis between the L-band backscattering intensity derived from the slope corrected ALOS PALSAR remote sensing data and the in-situ stand biophysical parameter of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) trees at the forests of Chiba Prefecture, Japan. Diameter at breast height (DBH), tree height, and stem volume were statistically compared with the slope corrected sigma naught backscattering in an empirical approach. It was found that the relationship between the backscattering and the stand characteristics was strongly dependent on species showing different trends between the Sugi and Hinoki trees. The Hinoki trees showed an increasing backscattering with increasing parameters (higher DBH, higher Tree height and higher stem volume), as it was mentioned on various researches, while the Sugi tree showed and decreasing backscattering with increasing parameters. We have also found for the Sugi trees that the backscattering is affected strongly by the number of stems. We have assumed that this is because of the characteristics of the Sugi trees which have high moisture content in the heartwood of the stem, compared with other tree species in Japan. The results pave the way to the possibility for estimating biophysical parameters within the forests of Japan by considering such trends and at highly rugged areas by using slope corrected imagery of the SAR data.

[1]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  Brigitte Leblon,et al.  Forest Inventory using Optical and Radar Remote Sensing , 2009 .

[3]  E. Chen,et al.  Forest Volume Density Estimation Capability of ALOS PALSAR Data over Hilly Region , 2009 .

[4]  S. Shiraishi,et al.  Variations of Wood Properties in Forests of Seedlings and Cutting Cultivars of Hinoki (Chamaecyparis obtusa) , 2006 .

[5]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[6]  Kamal Sarabandi,et al.  Preliminary analysis of ERS-1 SAR for forest ecosystem studies , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  K. A. Rahman,et al.  REMOTELY SENSED L-BAND SAR DATA FOR TROPICAL FOREST BIOMASS ESTIMATION , 2011 .

[8]  Eric S. Kasischke,et al.  Evaluation of approaches to estimating aboveground biomass in Southern pine forests using SIR-C data☆ , 1997 .

[9]  K. Minato,et al.  Growth and Wood Quality of Sugi and Hinoki Trees in the Plantations of the Wakayama Experiment Forest , 1989 .

[10]  R. Suzuki,et al.  Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska , 2013 .

[11]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[12]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[13]  E. Kasischke,et al.  Fire Danger Monitoring Using ERS-1 SAR Images in the Case of Northern Boreal Forests , 2002 .

[14]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Maurizio Santoro,et al.  Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Brigitte Leblon,et al.  Fire danger monitoring using RADARSAT‐1 over northern boreal forests , 2007 .

[17]  Marko Becker,et al.  Remote Sensing With Imaging Radar , 2016 .

[18]  Takeshi Motohka,et al.  Relationships between PALSAR backscattering data and forest above ground biomass in Japan , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Fawwaz T. Ulaby,et al.  Land-cover classification and estimation of terrain attributes using synthetic aperture radar , 1995 .

[20]  Guoqing Sun,et al.  Mapping biomass of a northern forest using multifrequency SAR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[21]  Jiancheng Shi,et al.  Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data , 1997, IEEE Trans. Geosci. Remote. Sens..

[22]  Mahta Moghaddam,et al.  Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[23]  Maurizio Santoro,et al.  Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band , 2012 .

[24]  Heiko Balzter,et al.  Retrieval of timber volume and snow water equivalent over a Finnish boreal forest from airborne polarimetric Synthetic Aperture Radar , 2002 .

[25]  Eric S. Kasischke,et al.  Correlating radar backscatter with components of biomass in loblolly pine forests , 1995, IEEE Trans. Geosci. Remote. Sens..

[26]  Kamal Sarabandi,et al.  Michigan microwave canopy scattering model , 1990 .

[27]  Eric S. Kasischke,et al.  Sensitivity of ERS-1 SAR to variations in soil water in fire-disturbed boreal forest ecosystems , 1996 .

[28]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[30]  Iain H. Woodhouse,et al.  A "Matchstick Model" of microwave backscatter from a forest , 2012 .

[31]  Yoshio Yamaguchi,et al.  Characteristics of Decomposition Powers of L-Band Multi-Polarimetric SAR in Assessing Tree Growth of Industrial Plantation Forests in the Tropics , 2012, Remote. Sens..

[32]  M. Craig Dobson,et al.  Toward precision forestry: plot-level parameter retrieval for slash pine plantations with JPL AIRSAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[33]  Bambang Supriadi,et al.  Backscattering characteristics of L-band polarimetric and optical satellite imagery over planted acacia forests in Sumatra, Indonesia , 2012 .

[34]  D. Batens,et al.  Theory and Experiment , 1988 .

[35]  Guoqing Sun,et al.  Effects of environmental conditions on boreal forest classification and biomass estimates with SAR , 2000, IEEE Trans. Geosci. Remote. Sens..

[36]  T. Le Toan,et al.  Sensitivity of space-borne SAR data to forest parameters over sloping terrain. Theory and experiment , 2001 .

[37]  Lars M. H. Ulander,et al.  Radiometric slope correction of synthetic-aperture radar images , 1996, IEEE Trans. Geosci. Remote. Sens..

[38]  L. Hess,et al.  Radar detection of flooding beneath the forest canopy - A review , 1990 .

[39]  Yasuhiro Utsumi,et al.  Green moisture content and basic density of 95 woody species growing in Kyushu University Forests, Japan , 2011 .

[40]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[41]  Dirk H. Hoekman,et al.  Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon , 2000, IEEE Trans. Geosci. Remote. Sens..

[42]  松嶋 正道,et al.  宇宙航空研究開発機構(Japan Aerospace Exploration Agency)先進複合材評価技術開発センター , 2004 .

[43]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[44]  J.T. Pulliainen,et al.  Seasonal dynamics of C-band backscatter of boreal forests with applications to biomass and soil moisture estimation , 1996, IEEE Trans. Geosci. Remote. Sens..

[45]  David Small,et al.  Flattening Gamma: Radiometric Terrain Correction for SAR Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Donald G. Leckie,et al.  Advances in remote sensing technologies for forest surveys and management , 1990 .

[47]  Masanobu Shimada,et al.  Ortho-Rectification and Slope Correction of SAR Data Using DEM and Its Accuracy Evaluation , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[48]  Eric S. Kasischke,et al.  Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest , 1995 .

[49]  Eric S. Kasischke,et al.  Monitoring South Florida Wetlands Using ERS-1 SAR Imagery , 1997 .