Discontinuous Non-Rigid Motion Analysis of Sea Ice using C-Band Synthetic Aperture Radar Satellite Imagery

Sea-ice motion consists of complex non-rigid motions involving continuous, piece-wise continuous and discrete particle motion. Techniques for estimating non-rigid motion of sea ice from pairs of satellite images (generally spaced three days apart) are still in the developmental stages. For interior Arctic and Antarctic pack ice, the continuum assumption begins to fail below the 5 km scale with evidence of discontinuities already revealed in models and remote sensing products in the form of abrupt changes in magnitude and direction of the differential velocity. Using a hierarchical multi-scale phase-correlation method and profiting from known limitations of cross correlation methods, we incorporate the identification of discontinuities into our motion estimation algorithm, thereby descending below the continuum threshold to examine the phenomenon of discontinuous non-rigid sea-ice motion.

[1]  M. Drinkwater,et al.  ERS Satellite Microwave Radar Observations of Antarctic Sea-Ice Dynamics , 1997 .

[2]  David Suter,et al.  Robust Total least Squares Based Optic Flow Computation , 1998, ACCV.

[3]  Electronics Letters , 1965, Nature.

[4]  Luca Lucchese Estimating affine transformations in the frequency domain , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[5]  Robert E. Davis,et al.  Statistics for the evaluation and comparison of models , 1985 .

[6]  Ron Kwok,et al.  Deformation of the Arctic Ocean Sea Ice Cover between November 1996 and April 1997: A Qualitative Survey , 2001 .

[7]  Ron Kwok,et al.  Analysis of SAR Data of the Polar Oceans: Recent Advances , 2011 .

[8]  Abhishek Kumar Jha,et al.  Affine theorem for two-dimensional Fourier transform , 1993 .

[9]  G. S. Knoke,et al.  The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law , 1998 .

[10]  Ron Kwok,et al.  Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions , 1998 .

[11]  H. Stern,et al.  Relationships Between Geostrophic Winds, Ice Strain Rates and the Piecewise Rigid Motions of Pack Ice , 2001 .

[12]  P. Anandan Measuring Visual Motion From Image Sequences , 1987 .

[13]  Michael J. Black Robust incremental optical flow , 1992 .

[14]  Z. Cheng,et al.  Extraction of Intermediate Scale Sea Ice Deformation Parameters from SAR Ice Motion Products , 1998 .

[15]  C. Morandi,et al.  Registration of Translated and Rotated Images Using Finite Fourier Transforms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  William J. Emery,et al.  Fram Strait satellite image‐derived ice motions , 1991 .

[17]  Mark R. Drinkwater,et al.  Satellite microwave radar- and buoy-tracked ice motion in the Weddell Sea during WWGS '92 , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Dmitry B. Goldgof,et al.  Nonrigid motion analysis , 1994 .

[19]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[20]  G. A. Thomas,et al.  Television motion measurement for DATV and other applications , 1987 .

[21]  M. Hopkins A discrete element Lagrangian sea ice model , 2004 .

[22]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[23]  W. J. Emery Correction to “Fram Strait satellite image‐derived ice motions” by W. J. Emery et al. , 1991 .

[24]  S. A. Bhukhanwala,et al.  Automated global enhancement of digitized photographs , 1994 .

[25]  Donald J. Cavalieri,et al.  On sea ice drift from the wavelet analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) data , 1998 .

[26]  D. Feltham,et al.  A continuum anisotropic model of sea-ice dynamics , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[28]  Michael T. Orchard,et al.  A fast direct Fourier-based algorithm for subpixel registration of images , 2001, IEEE Trans. Geosci. Remote. Sens..

[29]  Gian Antonio Mian,et al.  On the registration of an object translating on a static background , 1996, Pattern Recognit..

[30]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[31]  D. Rothrock,et al.  Sea Ice Tracking by Nested Correlations , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Michael Spann,et al.  Robust Optical Flow Computation Based on Least-Median-of-Squares Regression , 2004, International Journal of Computer Vision.

[33]  J. Overland,et al.  Arctic sea ice as a granular plastic , 1998 .

[34]  Anil K. Jain,et al.  Displacement Measurement and Its Application in Interframe Image Coding , 1981, IEEE Trans. Commun..

[35]  Roberto Manduchi,et al.  Accuracy analysis for correlation-based image registration algorithms , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[38]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[39]  Martin O. Jeffries,et al.  Antarctic sea ice : physical processes, interactions, and variability , 1998 .

[40]  Ross M. McConnell,et al.  An ice-motion tracking system at the Alaska SAR facility , 1990 .

[41]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[42]  Thuy Letoan Recent advances in radar remote sensing of forest , 1993 .

[43]  Hassan Foroosh,et al.  Extension of phase correlation to subpixel registration , 2002, IEEE Trans. Image Process..