Bifurcation and chaos in time delayed fractional order chaotic memfractor oscillator and its sliding mode synchronization with uncertainties

Abstract A novel chaotic memfractor oscillator with one unstable equilibriums is proposed. Various dynamic properties of the proposed system are derived and investigated to show the existence of chaotic oscillations. The fractional order time delayed model of the chaotic memfractor oscillator is derived considering time delay in the memcapacitor. Bifurcation of the time delayed system with its delay factor is investigated along with the parameter space bifurcation. A novel methodology for synchronizing identical time delayed systems with an uncertainty in the slave system is proposed and tested with the proposed time delayed fractional order chaotic memfractor oscillator.

[1]  P. Zhou,et al.  The adaptive synchronization of fractional-order chaotic system with fractional-order $$\varvec{1}<\varvec{q}<\varvec{2}$$1 , 2015 .

[2]  Julien Clinton Sprott,et al.  Evaluating Lyapunov exponent spectra with neural networks , 2013 .

[3]  Zaid Odibat,et al.  A note on phase synchronization in coupled chaotic fractional order systems , 2012 .

[4]  Fernando Corinto,et al.  Memristor-based chaotic circuit for pseudo-random sequence generators , 2016, 2016 18th Mediterranean Electrotechnical Conference (MELECON).

[5]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[6]  Giuseppe Grassi,et al.  Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization , 2015 .

[7]  Yong Zhou Basic Theory of Fractional Differential Equations , 2014 .

[8]  Massimiliano Di Ventra,et al.  Emulation of floating memcapacitors and meminductors using current conveyors , 2011 .

[9]  Guangyi Wang,et al.  Coexisting attractors in a memcapacitor-based chaotic oscillator , 2016 .

[10]  Xiangde Zhang,et al.  A novel image encryption-compression scheme using hyper-chaos and Chinese remainder theorem , 2013, Signal Process. Image Commun..

[11]  Guangyi Wang,et al.  A Chaotic Oscillator Based on HP Memristor Model , 2015 .

[12]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[13]  W. Zdzislaw,et al.  Matlab Solutions of Chaotic Fractional Order Circuits , 2011 .

[14]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[15]  Ahmed G. Radwan,et al.  Charge controlled memristor-less memcapacitor emulator , 2012 .

[16]  Ruoxun Zhang,et al.  Synchronization of the fractional-order chaotic system via adaptive observer , 2014 .

[17]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[18]  Xiaowei Wang,et al.  A Novel Memcapacitor Model and Its Application for Generating Chaos , 2016 .

[19]  Jia Neng Tang,et al.  Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control , 2013 .

[20]  Yan Liang,et al.  Design of a Practical Memcapacitor Emulator Without Grounded Restriction , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  Chun-Guang Li,et al.  Wavelet Phase Synchronization of Fractional-Order Chaotic Systems , 2012 .

[22]  Juan Yang,et al.  Sliding-Mode Synchronization Control for Uncertain Fractional-Order Chaotic Systems with Time Delay , 2015, Entropy.

[23]  Fang Yuan,et al.  A flux-controlled model of meminductor and its application in chaotic oscillator , 2016 .

[24]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[25]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[26]  Leon O. Chua,et al.  The Four-Element Chua's Circuit , 2008, Int. J. Bifurc. Chaos.

[27]  Guangyi Wang,et al.  Memcapacitor model and its application in a chaotic oscillator , 2016 .

[28]  Sha Wang,et al.  Generalized Synchronization of Fractional Order Chaotic Systems with Time-Delay , 2016 .

[29]  G. Adomian A review of the decomposition method and some recent results for nonlinear equations , 1990 .

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[31]  Karthikeyan Rajagopal,et al.  Fractional Order Memristor No Equilibrium Chaotic System with Its Adaptive Sliding Mode Synchronization and Genetically Optimized Fractional Order PID Synchronization , 2017, Complex..

[32]  Guanrong Chen,et al.  Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses , 2016 .

[33]  M. P. Aghababa Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory , 2012 .

[34]  Wei-Sheng Chen,et al.  Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems , 2013 .

[35]  Herbert H. C. Iu,et al.  Chaos in a memcapacitor based circuit , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[36]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[37]  Luigi Fortuna,et al.  A Gallery of Chaotic oscillators Based on HP memristor , 2013, Int. J. Bifurc. Chaos.

[38]  L. Chua Memristor-The missing circuit element , 1971 .

[39]  Karthikeyan Rajagopal,et al.  FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization , 2017 .

[40]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[41]  M. Haeri,et al.  Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems , 2007 .

[42]  Jean Bragard,et al.  Synchronization in Nonidentical Extended Systems , 1999 .

[43]  Changpin Li,et al.  On the bound of the Lyapunov exponents for the fractional differential systems. , 2010, Chaos.

[44]  S. Vaidyanathan,et al.  Dynamical Analysis and FPGA Implementation of a Novel Hyperchaotic System and Its Synchronization Using Adaptive Sliding Mode Control and Genetically Optimized PID Control , 2017 .

[45]  Xiangdong Wang,et al.  On the chaotic synchronization of Lorenz systems with time-varying lags , 2009 .

[46]  Guangyi Wang,et al.  Coexisting Oscillation and Extreme Multistability for a Memcapacitor-Based Circuit , 2017 .

[47]  Juergen Kurths,et al.  Introduction: Control and synchronization in chaotic dynamical systems. , 2003, Chaos.

[48]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[49]  Karthikeyan Rajagopal,et al.  Hyperchaotic Chameleon: Fractional Order FPGA Implementation , 2017, Complex..

[50]  R Jaimes-Reátegui,et al.  Synchronization of chaotic systems with coexisting attractors. , 2006, Physical review letters.

[51]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[52]  Rhouma Rhouma,et al.  Cryptanalysis of a new image encryption algorithm based on hyper-chaos , 2008 .

[53]  Kehui Sun,et al.  Synchronisation of fractional-order time delayed chaotic systems with ring connection , 2016 .

[54]  Kehui Sun,et al.  Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System , 2015, Entropy.

[55]  Leon O. Chua,et al.  Memristor Emulator for Memristor Circuit Applications , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[56]  A. Gallant,et al.  Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data , 1991 .

[57]  Hamid Reza Momeni,et al.  Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems , 2012, Signal Process..

[58]  Riccardo Caponetto,et al.  An Application of Adomian Decomposition for Analysis of fractional-Order Chaotic Systems , 2013, Int. J. Bifurc. Chaos.

[59]  Zhulin Wang,et al.  A new hyperchaotic circuit with two memristors and its application in image encryption , 2016 .

[60]  Xiaorong Wang,et al.  Effect of ambient condition on n-heptane droplet evaporation , 2017 .

[61]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[62]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[63]  Jingye Cai,et al.  Memristor-Based Chaotic Circuit for Text/Image Encryption and Decryption , 2015, 2015 8th International Symposium on Computational Intelligence and Design (ISCID).

[64]  Xu Jianping,et al.  Dynamical analysis of memristor chaotic oscillator , 2010 .