Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: Strategies for performance enhancement

[1]  Shuangfei Wang,et al.  Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials , 2023, Materials Today.

[2]  Zhong‐Shuai Wu,et al.  Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors , 2023, Advanced Functional Materials.

[3]  Shuangfei Wang,et al.  Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity , 2023, Nano Energy.

[4]  W. Sun,et al.  High-Performance Flexible Triboelectric Nanogenerator Based on Environmentally Friendly, Low-Cost Sodium Carboxymethylcellulose for Energy Harvesting and Self-Powered Sensing , 2022, ACS Applied Electronic Materials.

[5]  Zixun Wang,et al.  Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing , 2022, Nano Energy.

[6]  Xingfei Li,et al.  An Eccentric-Structured Hybrid Triboelectric-Electromagnetic Nanogenerator for Low-Frequency Mechanical Energy Harvesting , 2022, SSRN Electronic Journal.

[7]  Libo Wang,et al.  MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors , 2022, Nano Energy.

[8]  Shuangfei Wang,et al.  Air-permeable cellulosic triboelectric materials for self-powered healthcare products , 2022, Nano Energy.

[9]  Zhenfeng Bian,et al.  Self-Cleaning and Shape-Adaptive Triboelectric Nanogenerator-Contained TiO2 Nanoparticle Coating. , 2022, ACS applied materials & interfaces.

[10]  Rusen Yang,et al.  Strategies for effectively harvesting wind energy based on triboelectric nanogenerators , 2022, Nano Energy.

[11]  C. Xiong,et al.  Ultra-porous Cellulose Nanofibril Aerogel Films as Excellent Triboelectric Positive Materials Via Direct Freeze-drying of Dispersion , 2022, Nano Energy.

[12]  Shenmin Zhang,et al.  Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose , 2022, Polymers.

[13]  Yunxuan Weng,et al.  Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications , 2022, Polymers.

[14]  Tao Jiang,et al.  Achieving High Power Density and Durability of Sliding Mode Triboelectric Nanogenerator by Double Charge Supplement Strategy , 2022, Advanced Energy Materials.

[15]  Jilong Mo,et al.  Hierarchical Porous Cellulosic Triboelectric Materials for Extreme Environmental Conditions , 2022, Small methods.

[16]  S. Pillai,et al.  A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and self-powered vibrational sensor , 2022, Nano Energy.

[17]  Chi Zhang,et al.  Composite film with hollow hierarchical silica/perfluoropolyether filler and surface etching for performance enhanced triboelectric nanogenerators , 2022, Chemical Engineering Journal.

[18]  Zhongqiu Wang,et al.  Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator , 2022, Nano-Micro Letters.

[19]  Pengfei Li,et al.  Enhanced performance triboelectric nanogenerator based on porous structure C/MnO2 nanocomposite for energy harvesting , 2022, Nano Research.

[20]  Z. Sheng,et al.  Contact electrification property controlled by amino modification of cellulose fibers , 2022, Cellulose.

[21]  Xiaojuan Ma,et al.  Cocklebur-structured design of plant fibers for high-performance triboelectric nanogenerators and pressure sensors , 2022, Materials Today Communications.

[22]  H. Nawaz,et al.  Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators. , 2022, International journal of biological macromolecules.

[23]  Yen‐Fu Lin,et al.  Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators , 2022, Nature communications.

[24]  S. Hajra,et al.  Single-electrode mode TENG using ferromagnetic NiO-Ti based nanocomposite for effective energy harvesting , 2022, Materials Letters.

[25]  Y. Wan,et al.  Self-Powered Biosensing System Driven by Triboelectric Nanogenerator for Specific Detection of Gram-positive Bacteria , 2021, Nano Energy.

[26]  Jiaqing Xiong,et al.  Cellulose for Sustainable Triboelectric Nanogenerators , 2021, Advanced Energy and Sustainability Research.

[27]  Shuangxi Nie,et al.  Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators , 2021, Nano Energy.

[28]  Yang Jie,et al.  Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy , 2021, Nano Energy.

[29]  Yu Li,et al.  Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis , 2021, Applied Catalysis B: Environmental.

[30]  Weikang Zhang,et al.  A triboelectric nanogenerator based on temperature-stable high dielectric BaTiO3-based ceramic powder for energy harvesting , 2021 .

[31]  Mahesh Y. Chougale,et al.  Natural Seagrass Tribopositive Material Based Spray Coatable Triboelectric Nanogenerator , 2021 .

[32]  Daewon Kim,et al.  Liquid-metal embedded sponge-typed triboelectric nanogenerator for omnidirectionally detectable self-powered motion sensor , 2021 .

[33]  S. Ramakrishna,et al.  Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization. , 2021, Carbohydrate polymers.

[34]  Wenshuai Chen,et al.  Cellulose: Cellulose‐Based Flexible Functional Materials for Emerging Intelligent Electronics (Adv. Mater. 28/2021) , 2021, Advanced Materials.

[35]  Zhong Lin Wang,et al.  Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing , 2021 .

[36]  Zhong Lin Wang From contact electrification to triboelectric nanogenerators , 2021, Reports on progress in physics. Physical Society.

[37]  Yiping Guo,et al.  Dielectric Modulated Glass Fiber Fabric‐Based Single Electrode Triboelectric Nanogenerator for Efficient Biomechanical Energy Harvesting , 2021, Advanced Functional Materials.

[38]  A. Ellis,et al.  Poly(dimethylsiloxane) for Triboelectricity: From Mechanisms to Practical Strategies , 2021, Chemistry of Materials.

[39]  Zhong Lin Wang,et al.  Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy , 2021 .

[40]  Bhaskar Dudem,et al.  Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications , 2021 .

[41]  Y. Zhu,et al.  Template-assisted self-activation of mesoporous carbon with active nitrogen/oxygen configurations for sustainable triboelectric nanogenerator powered electro-Fenton degradation , 2021 .

[42]  Caofeng Pan,et al.  Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and Joule heating applications , 2021 .

[43]  Chunli Yao,et al.  The Recent Progress in Cellulose Paper‐Based Triboelectric Nanogenerators , 2021, Advanced Sustainable Systems.

[44]  Yuxin Song,et al.  A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting , 2021 .

[45]  Zhong Lin Wang,et al.  Improved Output Performance of Triboelectric Nanogenerator by Fast Accumulation Process of Surface Charges , 2021, Advanced Energy Materials.

[46]  Shuangfei Wang,et al.  Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators , 2021 .

[47]  P. Maji,et al.  Isolation of cellulose nanocrystals from different waste bio-mass collating their liquid crystal ordering with morphological exploration. , 2021, International journal of biological macromolecules.

[48]  J. Baek,et al.  An Overview of Cellulose‐Based Nanogenerators , 2021, Advanced Materials Technologies.

[49]  Yongjiu Zou,et al.  Advances in Nanostructures for High‐Performance Triboelectric Nanogenerators , 2021, Advanced Materials Technologies.

[50]  Sang‐Jae Kim,et al.  Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator , 2021, iScience.

[51]  J. Mair,et al.  Social impacts of mega-events: a systematic narrative review and research agenda , 2021, Journal of Sustainable Tourism.

[52]  Yang-Kyu Choi,et al.  Triboelectric Nanogenerator: Structure, Mechanism, and Applications. , 2021, ACS nano.

[53]  Haeshin Lee,et al.  Diatom Bio-Silica and Cellulose Nanofibril for Bio-Triboelectric Nanogenerators and Self-Powered Breath Monitoring Masks. , 2020, ACS applied materials & interfaces.

[54]  Haipeng Yu,et al.  Molecular‐Scale Design of Cellulose‐Based Functional Materials for Flexible Electronic Devices , 2020, Advanced Electronic Materials.

[55]  H. Olin,et al.  Material choices for triboelectric nanogenerators: A critical review , 2020, EcoMat.

[56]  Constantinos Soutis,et al.  Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator , 2020 .

[57]  Y. S. Negi,et al.  Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste , 2020 .

[58]  Jianjun Luo,et al.  Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications , 2020, EcoMat.

[59]  Long Gu,et al.  Free-Standing Triboelectric Layer-Based Full Fabric Wearable Nanogenerator for Efficient Mechanical Energy Harvesting , 2020 .

[60]  X. Tao,et al.  Recent advances in wearable textile‐based triboelectric generator systems for energy harvesting from human motion , 2020 .

[61]  Shuangfei Wang,et al.  Enhancement of Triboelectric Charge Density by Chemical Functionalization , 2020, Advanced Functional Materials.

[62]  Haeshin Lee,et al.  Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator , 2020 .

[63]  Sang‐Jae Kim,et al.  ZIF-62: a mixed linker metal–organic framework for triboelectric nanogenerators , 2020 .

[64]  B. Lu,et al.  Triboelectric nanogenerators with porous and hierarchically structured silk fibroin films via water electrospray-etching technology , 2020, Nano Energy.

[65]  S. Pinitsoontorn,et al.  Engineering Bacterial Cellulose Films by Nanocomposite Approach and Surface Modification for Biocompatible Triboelectric Nanogenerator , 2020 .

[66]  Nermeen A Elkasabgy,et al.  Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. , 2020, International journal of biological macromolecules.

[67]  Zhong Lin Wang,et al.  Superhydrophobic Cellulose Paper‐Based Triboelectric Nanogenerator for Water Drop Energy Harvesting , 2020, Advanced Materials Technologies.

[68]  B. D. Mattos,et al.  Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels , 2020, Advanced materials.

[69]  Yifan Wang,et al.  Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. , 2020, Journal of hazardous materials.

[70]  Chengkuo Lee,et al.  Machine Learning Glove Using Self‐Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications , 2020, Advanced science.

[71]  Anki Reddy Mule,et al.  Integrated Design of Highly Porous Cellulose-Loaded Polymer-Based Triboelectric Films toward Flexible, Humidity-Resistant, and Sustainable Mechanical Energy Harvesters , 2020 .

[72]  Zhong Lin Wang,et al.  Theoretical foundations of triboelectric nanogenerators (TENGs) , 2020 .

[73]  Zhong Lin Wang,et al.  Cellulose II Aerogel‐Based Triboelectric Nanogenerator , 2020, Advanced functional materials.

[74]  Zhong Lin Wang,et al.  Rationally Designed Dual‐Mode Triboelectric Nanogenerator for Harvesting Mechanical Energy by Both Electrostatic Induction and Dielectric Breakdown Effects , 2020, Advanced Energy Materials.

[75]  Hyun-U Ko,et al.  Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator , 2020 .

[76]  N. Vittayakorn,et al.  Multifunctional Nanomaterials Modification of Cellulose Paper for Efficient Triboelectric Nanogenerators , 2020, Advanced Materials Technologies.

[77]  Zhong Lin Wang Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution , 2020, Advanced Energy Materials.

[78]  Xuejiao Lin,et al.  Chemically functionalized cellulose nanofibrils-based gear-like triboelectric nanogenerator for energy harvesting and sensing , 2019, Nano Energy.

[79]  Fei Wang,et al.  Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy , 2019 .

[80]  Darren J. Martin,et al.  Trends in the production of cellulose nanofibers from non-wood sources , 2019, Cellulose.

[81]  Z. Ma,et al.  Portable Self-Charging Power System via Integration of a Flexible Paper-Based Triboelectric Nanogenerator and Supercapacitor , 2019, ACS Sustainable Chemistry & Engineering.

[82]  Anki Reddy Mule,et al.  Wearable Single-Electrode-Mode Triboelectric Nanogenerator via Conductive Polymer-Coated Textiles for Self-Power Electronics , 2019, ACS Sustainable Chemistry & Engineering.

[83]  Yanlin Song,et al.  All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors , 2019, Nano Energy.

[84]  B. Condon,et al.  Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge , 2019, Nanomaterials.

[85]  Yunlong Zi,et al.  A universal method for quantitative analysis of triboelectric nanogenerators , 2019, Journal of Materials Chemistry A.

[86]  Mario Grassi,et al.  The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. , 2019, International journal of pharmaceutics.

[87]  Sang‐Woo Kim,et al.  Highly Conductive Ferroelectric Cellulose Composite Papers for Efficient Triboelectric Nanogenerators , 2019, Advanced Functional Materials.

[88]  Ning Wang,et al.  All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator , 2019, Nano Research.

[89]  Junho Choi,et al.  Investigation of diamond-like carbon films as a promising dielectric material for triboelectric nanogenerator , 2019, Nano Energy.

[90]  Aurelia Chi Wang,et al.  On the origin of contact-electrification , 2019, Materials Today.

[91]  R. A. Ilyas,et al.  Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale , 2019, Journal of Materials Research and Technology.

[92]  Wei Wang,et al.  Progress in Triboelectric Materials: Toward High Performance and Widespread Applications , 2019, Advanced Functional Materials.

[93]  A. Salama Cellulose/calcium phosphate hybrids: New materials for biomedical and environmental applications. , 2019, International journal of biological macromolecules.

[94]  Hengyu Guo,et al.  Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics , 2018, Advanced Materials Technologies.

[95]  Amir Khajepour,et al.  Piezoelectric and triboelectric nanogenerators: Trends and impacts , 2018, Nano Today.

[96]  E. Biazar,et al.  Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. , 2018, International journal of biological macromolecules.

[97]  Yulong Zhang,et al.  Self-Powered Multifunctional Transient Bioelectronics. , 2018, Small.

[98]  C. Weder,et al.  Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications , 2018, Macromolecules.

[99]  Qingliang Liao,et al.  An Amphiphobic Hydraulic Triboelectric Nanogenerator for a Self‐Cleaning and Self‐Charging Power System , 2018, Advanced Functional Materials.

[100]  Zhongqiu Wang,et al.  Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy , 2018 .

[101]  Bo Chen,et al.  Scavenging Wind Energy by Triboelectric Nanogenerators , 2018 .

[102]  Z. Cai,et al.  Highly Porous Polymer Aerogel Film‐Based Triboelectric Nanogenerators , 2018 .

[103]  Xuhui Sun,et al.  Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops. , 2018, ACS nano.

[104]  Yury Gogotsi,et al.  Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators , 2018 .

[105]  Jin-Woo Han,et al.  All-printed triboelectric nanogenerator , 2018 .

[106]  Guofa Cai,et al.  Transparent, Flexible Cellulose Nanofibril–Phosphorene Hybrid Paper as Triboelectric Nanogenerator , 2017 .

[107]  M. Jawaid,et al.  Isolation and characterization of microcrystalline cellulose from roselle fibers. , 2017, International journal of biological macromolecules.

[108]  Rosfarizan Mohamad,et al.  Production and Status of Bacterial Cellulose in Biomedical Engineering , 2017, Nanomaterials.

[109]  Tae Whan Kim,et al.  Enhanced Triboelectric Nanogenerators Based on MoS2 Monolayer Nanocomposites Acting as Electron-Acceptor Layers. , 2017, ACS nano.

[110]  Y. Bando,et al.  3D network of cellulose-based energy storage devices and related emerging applications , 2017 .

[111]  Zhiyong Cai,et al.  Chemically Functionalized Natural Cellulose Materials for Effective Triboelectric Nanogenerator Development , 2017 .

[112]  Carla dos Santos Riccardi,et al.  Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate. , 2017, Materials science & engineering. C, Materials for biological applications.

[113]  Zhong Lin Wang,et al.  Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. , 2017, ACS nano.

[114]  Hao Sun,et al.  A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation , 2017 .

[115]  Wei Li,et al.  Triboelectric nanogenerator based on 317L stainless steel and ethyl cellulose for biomedical applications , 2017 .

[116]  Zhiyong Cai,et al.  Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials , 2016 .

[117]  D. Trache,et al.  Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. , 2016, International journal of biological macromolecules.

[118]  Binoy Bera Literature Review on Triboelectric Nanogenerator , 2016 .

[119]  X. Tao,et al.  A Fully Verified Theoretical Analysis of Contact‐Mode Triboelectric Nanogenerators as a Wearable Power Source , 2016 .

[120]  Usman Khan,et al.  Triboelectric Nanogenerators for Blue Energy Harvesting. , 2016, ACS nano.

[121]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[122]  Yannan Xie,et al.  Grating-Structured Freestanding Triboelectric-Layer Nanogenerator for Harvesting Biomechanical Energy , 2016 .

[123]  Jianhua Hao,et al.  Magnetic‐Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions , 2016, Advanced materials.

[124]  Haofei Shi,et al.  Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. , 2016, ACS applied materials & interfaces.

[125]  G. Westman,et al.  Crystalline Nanocellulose — Preparation, Modification, and Properties , 2015 .

[126]  Jie Wang,et al.  Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators , 2015, Nature Communications.

[127]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[128]  Sang-Woo Kim,et al.  Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. , 2015, ChemSusChem.

[129]  Simiao Niu,et al.  Theoretical systems of triboelectric nanogenerators , 2015 .

[130]  Zhong Lin Wang,et al.  Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. , 2015, ACS nano.

[131]  Mehmet Girayhan Say,et al.  A Motion‐ and Sound‐Activated, 3D‐Printed, Chalcogenide‐Based Triboelectric Nanogenerator , 2015, Advanced materials.

[132]  H. Järventaus,et al.  Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro , 2015, Environmental and molecular mutagenesis.

[133]  Zhong Lin Wang,et al.  Theory of freestanding triboelectric-layer-based nanogenerators , 2015 .

[134]  Yandan Chen,et al.  An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese , 2014 .

[135]  Zhong Lin Wang,et al.  Woven structured triboelectric nanogenerator for wearable devices. , 2014, ACS applied materials & interfaces.

[136]  Zhong Lin Wang,et al.  Triboelectric Nanogenerators as a Self‐Powered Motion Tracking System , 2014 .

[137]  Lili Liu,et al.  Nanostructured Graphene Composite Papers for Highly Flexible and Foldable Supercapacitors , 2014, Advanced materials.

[138]  Tae Yun Kim,et al.  Transparent Flexible Graphene Triboelectric Nanogenerators , 2014, Advanced materials.

[139]  Sihong Wang,et al.  Freestanding Triboelectric‐Layer‐Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non‐contact Modes , 2014, Advanced materials.

[140]  Biao Huang,et al.  Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo , 2014, Cellulose.

[141]  Y. Huang,et al.  Recent advances in bacterial cellulose , 2014, Cellulose.

[142]  Y. Davoudpour,et al.  Production and modification of nanofibrillated cellulose using various mechanical processes: a review. , 2014, Carbohydrate polymers.

[143]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[144]  Zhong Lin Wang,et al.  Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. , 2013, Nano letters.

[145]  Zhong Lin Wang,et al.  Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. , 2013, ACS nano.

[146]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[147]  Zhong Lin Wang,et al.  Linear-grating triboelectric generator based on sliding electrification. , 2013, Nano letters.

[148]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[149]  Levente Csoka,et al.  Piezoelectric Effect of Cellulose Nanocrystals Thin Films. , 2012, ACS macro letters.

[150]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[151]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[152]  L. McCarty,et al.  Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. , 2008, Angewandte Chemie.

[153]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[154]  Sheng Wang,et al.  Dual-electric-polarity augmented cyanoethyl cellulose-based triboelectric nanogenerator with ultra-high triboelectric charge density and enhanced electrical output property at high humidity , 2022, Nano Energy.

[155]  C. Xiong,et al.  Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review , 2021 .

[156]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[157]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[158]  D. Lacks,et al.  Particle dynamics simulations of triboelectric charging in granular insulator systems , 2008 .