A parallel and adaptive continuation method for semilinear bifurcation problems

In this paper we propose an efficient continuation method for the following of solution branches of parametrized semilinear elliptic problems. In order to limit the time required for the computation of a whole branch of accurate solutions, we combine a mesh adaptation strategy with parallel programming on a computer network. The first computer is devoted to the continuation on a coarse mesh, the others share out the correction of every roughly generated solution on a sequence of a posteriori refined meshes. A numerical example illustrating the performance of the method is given.

[1]  H. Keller,et al.  Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems , 1985 .

[2]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[3]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[4]  Wolf-Jürgen Beyn,et al.  Stability and Multiplicity of Solutions to Discretizations of Nonlinear Ordinary Differential Equations , 1981 .

[5]  H. Weber Multigrid Bifurcation Iteration , 1985 .

[6]  Randolph E. Bank,et al.  Stepsize selection in continuation procedures and damped Newton's method , 1989 .

[7]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[8]  F. J. Gould,et al.  Homotopy methods and global convergence , 1983 .

[9]  C.-S. Chien,et al.  Large sparse continuation problems , 1989 .

[10]  F. Brezzi,et al.  Finite Dimensional Approximation of Non-Linear Problems .3. Simple Bifurcation Points , 1981 .

[11]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[12]  K. Georg A Note on Stepsize Control for Numerical Curve Following , 1983 .

[13]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[14]  W. Rheinboldt,et al.  On steplength algorithms for a class of continuation methods siam j numer anal , 1981 .

[15]  Wolfgang Hackbusch,et al.  Multi-grid solution of continuation problems , 1982 .

[16]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[17]  Approximation des branches de solutions d’un problème de bifurcation semi-linéaire* , 1997 .

[18]  Milan Kubicek,et al.  Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.

[19]  Ivo Babuška,et al.  Computational error estimates and adaptive processes for some nonlinear structural problems , 1982 .