A Sufficient Completeness Reasoning Tool for Partial Specifications

We present the Maude sufficient completeness tool, which explicitly supports sufficient completeness reasoning for partial conditional specifications having sorts and subsorts and with domains of functions defined by conditional memberships. Our tool consists of two main components: (i) a sufficient completeness analyzer that generates a set of proof obligations which if discharged, ensures sufficient completeness; and (ii) Maude’s inductive theorem prover (ITP) that is used as a backend to try to automatically discharge those proof obligations.

[1]  José Meseguer,et al.  Operational termination of conditional term rewriting systems , 2005, Inf. Process. Lett..

[2]  José Meseguer,et al.  A Total Approach to Partial Algebraic Specification , 2002, ICALP.

[3]  José Meseguer,et al.  Reflection in Membership Equational Logic, Many-Sorted Equational Logic, Horn Logic with Equality, and Rewriting Logic , 2004, WRLA.

[4]  José Meseguer,et al.  Specification and proof in membership equational logic , 2000, Theor. Comput. Sci..

[5]  Michaël Rusinowitch,et al.  SPIKE: A System for Automatic Inductive Proofs , 1995, AMAST.

[6]  J. Meseguer,et al.  Building Equational Proving Tools by Reflection in Rewriting Logic , 2000 .

[7]  John V. Guttag,et al.  The specification and application to programming of abstract data types. , 1975 .

[8]  Hiroyuki Seki,et al.  Recognizing Boolean Closed A-Tree Languages with Membership Conditional Rewriting Mechanism , 2003, RTA.

[9]  Alberto Verdejo,et al.  A Tutorial on Specifying Data Structures in Maude , 2005, Electron. Notes Theor. Comput. Sci..

[10]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[11]  Jacques D. Fleuriot,et al.  IsaPlanner: A Prototype Proof Planner in Isabelle , 2003, CADE.

[12]  Francisco Durán,et al.  Maude as a Formal Meta-tool , 1999, World Congress on Formal Methods.

[13]  José Meseguer,et al.  Membership algebra as a logical framework for equational specification , 1997, WADT.

[14]  Tetsuo Tamai,et al.  CAFE: An Industrial-Strength Algebraic Formal Method , 2000 .

[15]  Deepak Kapur,et al.  An automated tool for analyzing completeness of equational specifications , 1994, ISSTA '94.

[16]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[17]  Jayadev Misra,et al.  Powerlist: a structure for parallel recursion , 1994, TOPL.

[18]  Gregg Rothermel,et al.  Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing and analysis , 2004 .

[19]  Francisco Durán,et al.  Proving termination of membership equational programs , 2004, PEPM '04.

[20]  Daniel J. Rosenkrantz,et al.  Sufficient-completeness, ground-reducibility and their complexity , 1991, Acta Informatica.

[21]  Paliath Narendran,et al.  On sufficient-completeness and related properties of term rewriting systems , 1987, Acta Informatica.

[22]  James J. Horning,et al.  The algebraic specification of abstract data types , 1978, Acta Informatica.

[23]  Francisco Durn Termination Checker and Knuth-Bendix Completion Tools for Maude Equational Specifications , 2000 .

[24]  Martin Wirsing,et al.  Extraction of Structured Programs from Specification Proofs , 1999, WADT.

[25]  Narciso Martí-Oliet,et al.  Maude: specification and programming in rewriting logic , 2002, Theor. Comput. Sci..

[26]  Deepak Kapur,et al.  New uses of linear arithmetic in automated theorem proving by induction , 1995, Journal of Automated Reasoning.

[27]  Michael Leuschel Proceedings of the 2003 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation, 2003, San Diego, California, USA, June 7, 2003 , 2003, PEPM.

[28]  Tobias Nipkow,et al.  A decidability result about sufficient-completeness of axiomatically specified abstract data types , 1983, Theoretical Computer Science.