Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide.

A diverse array of biological systems incorporate 3,4-dihydroxyphenlyalanine (DOPA) into proteins and small molecules for cross-linking and material generation. Marine worm eggshells, sea squirt wound plugs, and marine mussel adhesives may all be formed by combining DOPA-containing molecules with high levels of metals. In order to provide model systems for characterizing these biomaterials, we carried out a study on metal binding to a DOPA-containing peptide. Ultraviolet-visible absorption spectra are presented for the AdopaTP peptide binding to Fe3+, V3+, VO2+, Mn3+, Ti4+, Cu2+, Co2+, and Ni2+ in mono, bis, and where applicable, tris coordination modes. Association constants were determined for selected metal ions binding to the peptide. In general, the spectroscopic and binding properties of this DOPA-containing peptide were found to be similar to those of catechol.

[1]  Steven W. Taylor,et al.  Polarographic and Spectrophotometric Investigation of Iron(III) Complexation to 3,4-Dihydroxyphenylalanine-Containing Peptides and Proteins from Mytilus edulis , 1994 .

[2]  M. Sever,et al.  Visible absorption spectra of metal-catecholate and metal-tironate complexes. , 2004, Dalton transactions.

[3]  K. Nakanishi,et al.  The tunichromes. A class of reducing blood pigments from sea squirts: isolation, structures, and vanadium chemistry. , 1988, Journal of the American Chemical Society.

[4]  J. Waite The DOPA Ephemera: A Recurrent Motif in Invertebrates. , 1992, The Biological bulletin.

[5]  J. Waite,et al.  The phylogeny and chemical diversity of quinone-tanned glues and varnishes. , 1990, Comparative biochemistry and physiology. B, Comparative biochemistry.

[6]  A. Gergely,et al.  Complexes of 3,4-dihydroxyphenyl derivatives. I. Copper(II) complexes of DL-3,4-dihydroxyphenylalanine , 1976 .

[7]  J. Waite,et al.  Novel 3,4-di- and 3,4,5-trihydroxyphenylalanine-containing polypeptides from the blood cells of the ascidians Ascidia ceratodes and Molgula manhattensis. , 1995, Archives of biochemistry and biophysics.

[8]  A. Avdeef,et al.  Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin , 1978 .

[9]  D. Bruce Chase,et al.  Ferric Ion Complexes of a DOPA-Containing Adhesive Protein from Mytilus edulis , 1996 .

[10]  J. Magyar,et al.  Spectropotentiometric analysis of metal binding to structural zinc-binding sites: accounting quantitatively for pH and metal ion buffering effects. , 2003, Analytical biochemistry.

[11]  D. T. Sawyer,et al.  Polarographic and spectroscopic studies of the manganese(II), -(III), and -(IV) complexes formed by polyhydroxy ligands , 1978 .

[12]  A. Dessì,et al.  Potentiometric and spectroscopic studies on oxovanadium(IV) complexes of salicylic acid and catechol and some derivatives , 1990 .

[13]  C. A. Ramsden,et al.  Quinone chemistry and melanogenesis. , 2004, Methods in enzymology.

[14]  K. Hodgson,et al.  Vanadium in ascidians and the chemistry of tunichromes. , 1995, Metal ions in biological systems.

[15]  L. Epstein,et al.  MINIREVIEW—POLYPHENOLS AND OXIDASES IN SUBSTRATUM ADHESION BY MARINE ALGAE AND MUSSELS , 1998 .

[16]  T. S. Sheriff Production of hydrogen peroxide from dioxygen and hydroxylamine or hydrazine catalysed by manganese complexes , 1992 .

[17]  H. Sigel,et al.  Ternary complexes in solution. XI. Complex formation between the cobalt(II)-, nickel(II)-, copper(II)-, and zinc(II)-2,2'-bipyridyl 1:1 complexes and ethylenediamine, glycinate, or pyrocatecholate , 1971 .

[18]  J. Neilands,et al.  Siderophores: Structure and Function of Microbial Iron Transport Compounds (*) , 1995, The Journal of Biological Chemistry.

[19]  J. Waite,et al.  CROSS-LINKING OF DOPA-PROTEINS IN THE EGGSHELL OF BDELLOURA CANDIDA, A MARINE WORM : A PIXE STUDY , 1996 .

[20]  T. Deming,et al.  Mussel byssus and biomolecular materials. , 1999, Current opinion in chemical biology.

[21]  M. Sever,et al.  Metal-mediated cross-linking in the generation of a marine-mussel adhesive. , 2004, Angewandte Chemie.

[22]  K. Raymond,et al.  Solution equilibria of enterobactin and metal-enterobactin complexes , 1991 .

[23]  M. Sever,et al.  Synthesis of peptides containing DOPA (3,4-dihydroxyphenylalanine) , 2001 .

[24]  C. Tyson,et al.  Equilibriums of metal ions with pyrocatechol and 3,5-di-tert-butylpyrocatechol , 1968 .

[25]  Jennifer Monahan,et al.  Specificity of metal ion cross-linking in marine mussel adhesives. , 2003, Chemical communications.

[26]  Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. , 2002, Journal of the American Chemical Society.

[27]  B. Borgias,et al.  Synthetic, structural, and physical studies of titanium complexes of catechol and 3,5-di-tert-butylcatechol , 1984 .

[28]  Rzepecki Lm,et al.  Molecular diversity of marine glues: polyphenolic proteins from five mussel species. , 1991 .

[29]  I. Ross,et al.  Ferreascidin: A highly aromatic protein containing 3,4-dihydroxyphenylalanine from the blood cells of a stolidobranch ascidian , 1987 .

[30]  T. L. Coombs,et al.  Mytilus byssal threads as an environmental marker for metals , 1981 .

[31]  C. F. Timberlake 997. A potentiometric and polarographic study of copper–catechol complexes , 1957 .

[32]  T. L. Coombs,et al.  The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (I.) and its distribution in the tissues , 1976 .

[33]  J. Waite,et al.  Eggshell formation in Bdelloura candida, an ectoparasitic turbellarian of the horseshoe crab Limulus polyphemus. , 1993, The Journal of experimental zoology.

[34]  Steven W. Taylor,et al.  Spectrophotometric Evidence for Involvement of Aromatic Residues in the Interaction of Ferreascidin with Ferric Ion , 1993 .

[35]  R. Dean,et al.  Metabolism of protein-bound DOPA in mammals. , 2000, The international journal of biochemistry & cell biology.

[36]  H. Boukhalfa,et al.  Chemical aspects of siderophore mediated iron transport , 2002, Biometals.

[37]  Jennifer Monahan,et al.  Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[38]  R. Weinland,et al.  Über Brenzcatechinverbindungen einiger 2, 3‐ und 4‐wertiger Metalle , 1926 .

[39]  L. Sommer Titan(IV)-chelate mit brenzcatechin, brenzcatechin-3,5-disulfonsäure und protocatechusäure , 1963 .

[40]  K. Raymond,et al.  8.6 – Siderophores and Transferrins , 2003 .

[41]  K. Raymond Bioinorganic Chemistry—II , 1977 .

[42]  E. Bayer,et al.  New Perspectives in the Chemistry and Biochemistry of the Tunichromes and Related Compounds. , 1997, Chemical reviews.