Convex Optimization with Random Pursuit
暂无分享,去创建一个
[1] L. Isserlis. ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .
[2] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[3] E. J. G. Pitman,et al. The “closest” estimates of statistical parameters , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] D. A. Flanders,et al. Numerical Determination of Fundamental Modes , 1950 .
[5] G. Box,et al. On the Experimental Attainment of Optimum Conditions , 1951 .
[6] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[7] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[8] J. Kiefer,et al. Sequential minimax search for a maximum , 1953 .
[9] G. Shortley. Use of Tschebyscheff‐Polynomial Operators in the Numerical Solution of Boundary‐Value Problems , 1953 .
[10] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[11] Samuel H. Brooks. A Discussion of Random Methods for Seeking Maxima , 1958 .
[12] A. L. Nagar. The Bias and Moment Matrix of the General k-Class Estimators of the Parameters in Simultaneous Equations , 1959 .
[13] B. Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .
[14] H. H. Rosenbrock,et al. An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..
[15] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[16] Robert Hooke,et al. `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.
[17] G. R. Hext,et al. Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .
[18] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[19] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[20] D. J. Newman,et al. Location of the Maximum on Unimodal Surfaces , 1965, JACM.
[21] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .
[22] G. W. Stewart,et al. A Modification of Davidon's Minimization Method to Accept Difference Approximations of Derivatives , 1967, JACM.
[23] Sociedad Colombiana de Matemáticas. Revista colombiana de matemáticas , 1967 .
[24] T. Whitney,et al. Two Algorithms Related to the Method of Steepest Descent , 1967 .
[25] J. Ponstein,et al. Seven kinds of convexity , 1967 .
[26] D. J. Evans,et al. The Use of Pre-conditioning in Iterative Methods for Solving Linear Equations with Symmetric Positive Definite Matrices , 1968 .
[27] H. Neudecker. The Kronecker Matrix Product and Some of its Applications in Econometrics , 1968 .
[28] K. Steiglitz,et al. Adaptive step size random search , 1968 .
[29] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[30] F. Loonstra. III – Linear Algebra , 1969 .
[31] C. Berry. A pharmacy coordinated unit dose dispensing and drug administration system. Description of the system. , 1970, American journal of hospital pharmacy.
[32] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[33] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[34] G. Herman,et al. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.
[35] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[36] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[37] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[38] P. Wolfe. Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .
[39] K. Tanabe. Projection method for solving a singular system of linear equations and its applications , 1971 .
[40] L. A. Rastrygin. Problems of random search , 1972 .
[41] B. Shubert. A Sequential Method Seeking the Global Maximum of a Function , 1972 .
[42] T. Sawa. Finite-Sample Properties of the k-Class Estimators , 1972 .
[43] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[44] Bronwyn H Hall,et al. Estimation and Inference in Nonlinear Structural Models , 1974 .
[45] V. G. Karmanov. Convergence estimates for iterative minimization methods , 1974 .
[46] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[47] V. G. Karmanov. On Convergence of a Random Search Method in Convex Minimization Problems , 1975 .
[48] N. Z. Shor. Cut-off method with space extension in convex programming problems , 1977, Cybernetics.
[49] T. Sawa. The exact moments of the least squares estimator for the autoregressive model , 1978 .
[50] J. Magnus. The moments of products of quadratic forms in normal variables , 1978 .
[51] J. Gooijer. Exact moments of the sample autocorrelations from series generated by general arima processes of order (p, d, q), d=0 or 1 , 1980 .
[52] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[53] Michael J. Todd,et al. Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..
[54] Scott Kirkpatrick,et al. Optimization by Simmulated Annealing , 1983, Sci..
[55] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[56] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[57] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .
[58] Ryszard Zieliński,et al. Stochastische Verfahren zur Suche nach dem Minimum einer Funktion , 1983 .
[59] R. E. Wheeler. Statistical distributions , 1983, APLQ.
[60] Robert L. Smith,et al. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..
[61] Steven G. Louie,et al. A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .
[62] J. Cullum,et al. Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory , 1984 .
[63] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[64] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[65] K. Marti,et al. Controlled Random Search Procedures for Global Optimization , 2020, International Series in Operations Research & Management Science.
[66] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[67] M. C. Jones. On moments of ratios of quadratic forms in normal variables , 1987 .
[68] W. Bühler. Two proofs of the kantorovich inequality and some generalizations , 1987 .
[69] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[70] T. C. Hu,et al. Optimization of globally convex functions , 1989 .
[71] T. Chiang,et al. A Limit Theorem for a Class of Inhomogeneous Markov Processes , 1989 .
[72] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[73] Martin E. Dyer,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.
[74] J. Lindenstrauss,et al. Approximation of zonoids by zonotopes , 1989 .
[75] Fred W. Glover,et al. Tabu Search - Part I , 1989, INFORMS J. Comput..
[76] Murray D. Smith,et al. On the expectation of a ratio of quadratic forms in normal variables , 1989 .
[77] Fred Glover,et al. Tabu Search - Part II , 1989, INFORMS J. Comput..
[78] John E. Dennis,et al. Direct Search Methods on Parallel Machines , 1991, SIAM J. Optim..
[79] Georges Le Vey,et al. La Differentiation automatique de fonctions representees par des programmes , 1991 .
[80] William C. Davidon,et al. Variable Metric Method for Minimization , 1959, SIAM J. Optim..
[81] Hans G. Feichtinger,et al. New variants of the POCS method using affine subspaces of finite codimension with applications to irregular sampling , 1992, Other Conferences.
[82] Micha Sharir,et al. A subexponential bound for linear programming , 1992, SCG '92.
[83] Henryk Wozniakowski,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..
[84] Gil Kalai,et al. A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.
[85] A. M. Mathai,et al. Quadratic forms in random variables : theory and applications , 1992 .
[86] J. Kuczy,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .
[87] Miklós Simonovits,et al. Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.
[88] Robert L. Smith,et al. Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..
[89] N. Higham. Optimization by Direct Search in Matrix Computations , 1993, SIAM J. Matrix Anal. Appl..
[90] Hans-Georg Beyer,et al. Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.
[91] J. Magnus,et al. Evaluation of moments of quadratic forms and ratios of quadratic forms in normal variables: background, motivation and examples , 1993 .
[92] Hans-Paul Schwefel,et al. Evolution and Optimum Seeking: The Sixth Generation , 1993 .
[93] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[94] S. Hyakin,et al. Neural Networks: A Comprehensive Foundation , 1994 .
[95] G. A. Ghazal. Moments of the ratio of two dependent quadratic forms , 1994 .
[96] M. Powell. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .
[97] Cullen Schaffer,et al. A Conservation Law for Generalization Performance , 1994, ICML.
[98] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[99] Hans-Georg Beyer,et al. Towards a Theory of 'Evolution Strategies': Results for (1, +λ)-Strategies on (Nearly) Arbitrary Fitness Functions , 1994, PPSN.
[100] C. T. Kelley,et al. An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..
[101] D. Wolpert,et al. No Free Lunch Theorems for Search , 1995 .
[102] G. Hounsfield. Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.
[103] Tjalling J. Ypma,et al. Historical Development of the Newton-Raphson Method , 1995, SIAM Rev..
[104] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[105] G. A. Ghazal. Recurrence formula for expectations of products of quadratic forms , 1996 .
[106] V. Protasov. Algorithms for approximate calculation of the minimum of a convex function from its values , 1996 .
[107] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[108] Margaret H. Wright,et al. Direct search methods: Once scorned, now respectable , 1996 .
[109] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[110] B. Holmquist. Expectations of products of quadratic forms in normal variables , 1996 .
[111] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[112] Pravin M. Vaidya,et al. A new algorithm for minimizing convex functions over convex sets , 1996, Math. Program..
[113] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.
[114] Hein Hundal,et al. The Rate of Convergence for the Method of Alternating Projections, II , 1997 .
[115] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[116] Xin Yao,et al. Fast Evolution Strategies , 1997, Evolutionary Programming.
[117] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[118] O. SIAMJ.,et al. ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .
[119] Katya Scheinberg,et al. On the convergence of derivative-free methods for unconstrained optimization , 1997 .
[120] J. Bourgain. Random Points in Isotropic Convex Sets , 1998 .
[121] M. J. D. Powell,et al. Direct search algorithms for optimization calculations , 1998, Acta Numerica.
[122] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[123] R. Ash,et al. Probability and measure theory , 1999 .
[124] R. Heijmans. When does the expectation of a ratio equal the ratio of expectations? , 1999 .
[125] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[126] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[127] Y. Saad,et al. Iterative solution of linear systems in the 20th century , 2000 .
[128] Arnaud Berny. Selection and Reinforcement Learning for Combinatorial Optimization , 2000, PPSN.
[129] V. Milman,et al. Concentration Property on Probability Spaces , 2000 .
[130] L. Watson,et al. Numerical analysis 2000 Vol. IV: optimization and nonlinear equations , 2000 .
[131] M. Evans. Statistical Distributions , 2000 .
[132] V. Torczon,et al. Direct search methods: then and now , 2000 .
[133] Luc Florack,et al. On the Behavior of Spatial Critical Points under Gaussian Blurring. A Folklore Theorem and Scale-Space Constraints , 2001, Scale-Space.
[134] Hans-Georg Beyer,et al. The Theory of Evolution Strategies , 2001, Natural Computing Series.
[135] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[136] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[137] James W. Roberts,et al. A general theory of almost convex functions , 2001, math/0101262.
[138] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[139] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[140] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[141] Sheldon H. Jacobson,et al. Finite-Time Performance Analysis of Static Simulated Annealing Algorithms , 2002, Comput. Optim. Appl..
[142] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[143] Z. Páles. On approximately convex functions , 2002 .
[144] M. J. D. Powell,et al. UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..
[145] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[146] Marc S. Paolella. Computing moments of ratios of quadratic forms in normal variables , 2003, Comput. Stat. Data Anal..
[147] Jens Jägersküpper,et al. Analysis of a Simple Evolutionary Algorithm for Minimization in Euclidean Spaces , 2003, ICALP.
[148] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[149] Tamara G. Kolda,et al. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..
[150] Santosh S. Vempala,et al. Hit-and-run from a corner , 2004, STOC '04.
[151] Santosh S. Vempala,et al. Solving convex programs by random walks , 2004, JACM.
[152] Daniel Bienstock,et al. Solving fractional packing problems in Oast(1/ε) iterations , 2004, STOC '04.
[153] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[154] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[155] S. Mendelson. On weakly bounded empirical processes , 2005, math/0512554.
[156] A. Galántai. On the rate of convergence of the alternating projection method in finite dimensional spaces , 2005 .
[157] Anne Auger,et al. Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..
[158] A. Giannopoulos,et al. Random Points in Isotropic Unconditional Convex Bodies , 2005 .
[159] M. Rudelson,et al. Lp-moments of random vectors via majorizing measures , 2005, math/0507023.
[160] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[161] Jens Jägersküpper,et al. Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.
[162] A. Auger. Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .
[163] Alberto L. Sangiovanni-Vincentelli,et al. A theoretical framework for simulated annealing , 1991, Algorithmica.
[164] Alex D. D. Craik,et al. Prehistory of Faà di Bruno's Formula , 2005, Am. Math. Mon..
[165] S. Mendelson,et al. On singular values of matrices with independent rows , 2006 .
[166] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..
[167] G. Paouris. Concentration of mass on convex bodies , 2006 .
[168] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[169] Jens Jägersküpper,et al. How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..
[170] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[171] CHARLES AUDET,et al. Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..
[172] STOCHASTIC OPTIMIZATION FOR SYSTEM DESIGN , 2006 .
[173] M. Powell. The NEWUOA software for unconstrained optimization without derivatives , 2006 .
[174] Charles Audet,et al. Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points , 2006, SIAM J. Optim..
[175] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[176] Anne Auger,et al. Log-Linear Convergence and Optimal Bounds for the (1+1)-ES , 2007, Artificial Evolution.
[177] Luis Rademacher,et al. Approximating the centroid is hard , 2007, SCG '07.
[178] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[179] Riccardo Poli,et al. Particle swarm optimization , 1995, Swarm Intelligence.
[180] Arkadi Nemirovski,et al. EFFICIENT METHODS IN CONVEX PROGRAMMING , 2007 .
[181] James N. Knight,et al. Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.
[182] Guillaume Aubrun. Sampling convex bodies: a random matrix approach , 2007 .
[183] Volker Kaibel,et al. Two New Bounds for the Random-Edge Simplex-Algorithm , 2007, SIAM J. Discret. Math..
[184] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[185] Jens Jägersküpper. Lower Bounds for Hit-and-Run Direct Search , 2007, SAGA.
[186] Elad Hazan,et al. Sparse Approximate Solutions to Semidefinite Programs , 2008, LATIN.
[187] Jirí Matousek,et al. On variants of the Johnson–Lindenstrauss lemma , 2008, Random Struct. Algorithms.
[188] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[189] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[190] Yurii Nesterov,et al. Rounding of convex sets and efficient gradient methods for linear programming problems , 2004, Optim. Methods Softw..
[191] Tom Schaul,et al. Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[192] Gabor T. Herman,et al. Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.
[193] Charles Audet,et al. OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions , 2008, SIAM J. Optim..
[194] Drew D. Creal. A Survey of Sequential Monte Carlo Methods for Economics and Finance , 2012 .
[195] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[196] R. Adamczak,et al. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.
[197] D. Needell. Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.
[198] Alexander Shapiro,et al. Stochastic Approximation approach to Stochastic Programming , 2013 .
[199] M. Baes. Estimate sequence methods: extensions and approximations , 2009 .
[200] Tom Schaul,et al. Stochastic search using the natural gradient , 2009, ICML '09.
[201] Anne Auger,et al. Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments , 2011, Algorithmica.
[202] Isao Ono,et al. Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies , 2010, PPSN.
[203] D. S. Bhusan,et al. Linear Programming, the Simplex Algorithm and Simple Polytopes , 2010 .
[204] Santosh S. Vempala,et al. Recent Progress and Open Problems in Algorithmic Convex Geometry , 2010, FSTTCS.
[205] J. Meza,et al. Steepest descent , 2010 .
[206] Tom Schaul,et al. Exponential natural evolution strategies , 2010, GECCO '10.
[207] Michael I. Jordan,et al. Random Conic Pursuit for Semidefinite Programming , 2010, NIPS.
[208] Christian L. Müller,et al. Gaussian Adaptation Revisited - An Entropic View on Covariance Matrix Adaptation , 2010, EvoApplications.
[209] H. Rabitz,et al. Control of quantum phenomena: past, present and future , 2009, 0912.5121.
[210] Michele Parrinello,et al. A self-learning algorithm for biased molecular dynamics , 2010, Proceedings of the National Academy of Sciences.
[211] Anne Auger,et al. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.
[212] John L. Nazareth,et al. Introduction to derivative-free optimization , 2010, Math. Comput..
[213] Christian L. Müller. Black-box landscapes , 2010 .
[214] Uri Zwick,et al. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.
[215] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[216] A. Lewis,et al. Randomized Hessian estimation and directional search , 2011 .
[217] Eric Moulines,et al. Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning , 2011, NIPS.
[218] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[219] Shang-Hua Teng,et al. Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.
[220] Christian L. Müller,et al. Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis , 2011, EvoApplications.
[221] Yonina C. Eldar,et al. Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma , 2010, Numerical Algorithms.
[222] R. Vershynin. Approximating the moments of marginals of high-dimensional distributions , 2009, 0911.0391.
[223] Black-box Landscapes : Characterization , Optimization , Sampling , and Application to Geometric Configuration Problems , 2011 .
[224] P. Deuflhard,et al. Numerische Mathematik 3 , 2011 .
[225] Yurii Nesterov,et al. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..
[226] Christian L. Müller,et al. On Spectral Invariance of Randomized Hessian and Covariance Matrix Adaptation Schemes , 2012, PPSN.
[227] Tom Schaul,et al. Natural evolution strategies converge on sphere functions , 2012, GECCO '12.
[228] Robert D. Nowak,et al. Query Complexity of Derivative-Free Optimization , 2012, NIPS.
[229] Martin J. Wainwright,et al. Randomized Smoothing for Stochastic Optimization , 2011, SIAM J. Optim..
[230] Jonathan M. Garibaldi,et al. Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[231] Marcus Gallagher,et al. Length Scale for Characterising Continuous Optimization Problems , 2012, PPSN.
[232] Yi Ma,et al. Gaussian Smoothing and Asymptotic Convexity , 2012 .
[233] Dirk V. Arnold,et al. A (1+1)-CMA-ES for constrained optimisation , 2012, GECCO '12.
[234] D. Needell,et al. Two-Subspace Projection Method for Coherent Overdetermined Systems , 2012, 1204.0279.
[235] Youhei Akimoto,et al. Analysis of a natural gradient algorithm on monotonic convex-quadratic-composite functions , 2012, GECCO '12.
[236] Martin J. Wainwright,et al. Optimal rates for zero-order optimization: the power of two function evaluations , 2013, arXiv.org.
[237] Nikolaos M. Freris,et al. Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..
[238] Christian L. Müller,et al. Optimization of Convex Functions with Random Pursuit , 2011, SIAM J. Optim..
[239] Ilya Loshchilov,et al. CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.
[240] Nikolaos V. Sahinidis,et al. Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..
[241] Raymond Kan,et al. On the moments of ratios of quadratic forms in normal random variables , 2013, J. Multivar. Anal..
[242] Yin Tat Lee,et al. Efficient Accelerated Coordinate Descent Methods and Faster Algorithms for Solving Linear Systems , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[243] Michèle Sebag,et al. Bi-population CMA-ES agorithms with surrogate models and line searches , 2013, GECCO.
[244] Deanna Needell,et al. Stochastic gradient descent and the randomized Kaczmarz algorithm , 2013, ArXiv.
[245] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[246] Hans-Georg Beyer,et al. Convergence Analysis of Evolutionary Algorithms That Are Based on the Paradigm of Information Geometry , 2014, Evolutionary Computation.
[247] Sebastian U. Stich,et al. On Low Complexity Acceleration Techniques for Randomized Optimization , 2014, PPSN.
[248] Martin J. Wainwright,et al. Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations , 2013, IEEE Transactions on Information Theory.
[249] Christian L. Müller,et al. Variable metric random pursuit , 2012, Math. Program..
[250] Siam Rfview,et al. CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .
[251] Anne Auger,et al. Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains , 2013, SIAM J. Optim..
[252] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.
[253] Monika Eisenhower,et al. Matrix Tricks For Linear Statistical Models Our Personal Top Twenty , 2016 .