Convex Optimization with Random Pursuit

Optimization problems are ubiquitous in science and engineering. In this thesis, we study unconstrained black-box optimization problems that can only be accessed by an oracle that returns the function value at a query point. The theory of convex optimization problems is welldeveloped and such problems are typically solved with gradient-based methods. For non-convex problems, there is no unifying theoretical treatment and one has to rely on, typically gradient-free, search heuristics. Here, we analyze gradient-free optimization algorithms on convex functions. In the first part of this thesis, we study Random Pursuit algorithms. These are iterative search schemes, where each iteration consists of two steps: (i) the generation of a (random) search direction and (ii) performing a step along this direction. We present a general framework to study such algorithms and prove convergence on smooth convex and strongly convex functions. The convergence rates depend on a sufficient decrease condition that measures the quality of the generated steps. This condition is for instance met by schemes that use a line search to generate the steps. For line search algorithms, we extend the convergence analysis to functions that are not necessarily everywhere strongly convex, but only at the optimum. Line search algorithms do not need any problem specific parameterization as input and are invariant under strictly monotone transformations of the objective functions. They thus enjoy identical convergence behavior on a wider function class. We discuss several kinds of random search directions and provide estimates for the expected convergence rates. In the second part, we present three, at first sight seemingly unrelated, optimization algorithms that can be analyzed in the Random Pursuit framework. The examples comprise (i) solving linear systems with Kaczmarz’ method and (ii) Hessian learning with Leventhal and

[1]  L. Isserlis ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .

[2]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[3]  E. J. G. Pitman,et al.  The “closest” estimates of statistical parameters , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  D. A. Flanders,et al.  Numerical Determination of Fundamental Modes , 1950 .

[5]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[6]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[7]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[8]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[9]  G. Shortley Use of Tschebyscheff‐Polynomial Operators in the Numerical Solution of Boundary‐Value Problems , 1953 .

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[12]  A. L. Nagar The Bias and Moment Matrix of the General k-Class Estimators of the Parameters in Simultaneous Equations , 1959 .

[13]  B. Grünbaum Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .

[14]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[15]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[16]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[17]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[18]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[19]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[20]  D. J. Newman,et al.  Location of the Maximum on Unimodal Surfaces , 1965, JACM.

[21]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[22]  G. W. Stewart,et al.  A Modification of Davidon's Minimization Method to Accept Difference Approximations of Derivatives , 1967, JACM.

[23]  Sociedad Colombiana de Matemáticas Revista colombiana de matemáticas , 1967 .

[24]  T. Whitney,et al.  Two Algorithms Related to the Method of Steepest Descent , 1967 .

[25]  J. Ponstein,et al.  Seven kinds of convexity , 1967 .

[26]  D. J. Evans,et al.  The Use of Pre-conditioning in Iterative Methods for Solving Linear Equations with Symmetric Positive Definite Matrices , 1968 .

[27]  H. Neudecker The Kronecker Matrix Product and Some of its Applications in Econometrics , 1968 .

[28]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[29]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[30]  F. Loonstra III – Linear Algebra , 1969 .

[31]  C. Berry A pharmacy coordinated unit dose dispensing and drug administration system. Description of the system. , 1970, American journal of hospital pharmacy.

[32]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[33]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[34]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[35]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[36]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[37]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[38]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .

[39]  K. Tanabe Projection method for solving a singular system of linear equations and its applications , 1971 .

[40]  L. A. Rastrygin Problems of random search , 1972 .

[41]  B. Shubert A Sequential Method Seeking the Global Maximum of a Function , 1972 .

[42]  T. Sawa Finite-Sample Properties of the k-Class Estimators , 1972 .

[43]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[44]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[45]  V. G. Karmanov Convergence estimates for iterative minimization methods , 1974 .

[46]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[47]  V. G. Karmanov On Convergence of a Random Search Method in Convex Minimization Problems , 1975 .

[48]  N. Z. Shor Cut-off method with space extension in convex programming problems , 1977, Cybernetics.

[49]  T. Sawa The exact moments of the least squares estimator for the autoregressive model , 1978 .

[50]  J. Magnus The moments of products of quadratic forms in normal variables , 1978 .

[51]  J. Gooijer Exact moments of the sample autocorrelations from series generated by general arima processes of order (p, d, q), d=0 or 1 , 1980 .

[52]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[53]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[54]  Scott Kirkpatrick,et al.  Optimization by Simmulated Annealing , 1983, Sci..

[55]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[56]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[57]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[58]  Ryszard Zieliński,et al.  Stochastische Verfahren zur Suche nach dem Minimum einer Funktion , 1983 .

[59]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[60]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[61]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[62]  J. Cullum,et al.  Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. I Theory , 1984 .

[63]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[64]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[65]  K. Marti,et al.  Controlled Random Search Procedures for Global Optimization , 2020, International Series in Operations Research & Management Science.

[66]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[67]  M. C. Jones On moments of ratios of quadratic forms in normal variables , 1987 .

[68]  W. Bühler Two proofs of the kantorovich inequality and some generalizations , 1987 .

[69]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[70]  T. C. Hu,et al.  Optimization of globally convex functions , 1989 .

[71]  T. Chiang,et al.  A Limit Theorem for a Class of Inhomogeneous Markov Processes , 1989 .

[72]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[73]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[74]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[75]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[76]  Murray D. Smith,et al.  On the expectation of a ratio of quadratic forms in normal variables , 1989 .

[77]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[78]  John E. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991, SIAM J. Optim..

[79]  Georges Le Vey,et al.  La Differentiation automatique de fonctions representees par des programmes , 1991 .

[80]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[81]  Hans G. Feichtinger,et al.  New variants of the POCS method using affine subspaces of finite codimension with applications to irregular sampling , 1992, Other Conferences.

[82]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[83]  Henryk Wozniakowski,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..

[84]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[85]  A. M. Mathai,et al.  Quadratic forms in random variables : theory and applications , 1992 .

[86]  J. Kuczy,et al.  Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .

[87]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[88]  Robert L. Smith,et al.  Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..

[89]  N. Higham Optimization by Direct Search in Matrix Computations , 1993, SIAM J. Matrix Anal. Appl..

[90]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[91]  J. Magnus,et al.  Evaluation of moments of quadratic forms and ratios of quadratic forms in normal variables: background, motivation and examples , 1993 .

[92]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[93]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[94]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[95]  G. A. Ghazal Moments of the ratio of two dependent quadratic forms , 1994 .

[96]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[97]  Cullen Schaffer,et al.  A Conservation Law for Generalization Performance , 1994, ICML.

[98]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[99]  Hans-Georg Beyer,et al.  Towards a Theory of 'Evolution Strategies': Results for (1, +λ)-Strategies on (Nearly) Arbitrary Fitness Functions , 1994, PPSN.

[100]  C. T. Kelley,et al.  An Implicit Filtering Algorithm for Optimization of Functions with Many Local Minima , 1995, SIAM J. Optim..

[101]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[102]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[103]  Tjalling J. Ypma,et al.  Historical Development of the Newton-Raphson Method , 1995, SIAM Rev..

[104]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[105]  G. A. Ghazal Recurrence formula for expectations of products of quadratic forms , 1996 .

[106]  V. Protasov Algorithms for approximate calculation of the minimum of a convex function from its values , 1996 .

[107]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[108]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[109]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[110]  B. Holmquist Expectations of products of quadratic forms in normal variables , 1996 .

[111]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[112]  Pravin M. Vaidya,et al.  A new algorithm for minimizing convex functions over convex sets , 1996, Math. Program..

[113]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[114]  Hein Hundal,et al.  The Rate of Convergence for the Method of Alternating Projections, II , 1997 .

[115]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[116]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[117]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[118]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[119]  Katya Scheinberg,et al.  On the convergence of derivative-free methods for unconstrained optimization , 1997 .

[120]  J. Bourgain Random Points in Isotropic Convex Sets , 1998 .

[121]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[122]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[123]  R. Ash,et al.  Probability and measure theory , 1999 .

[124]  R. Heijmans When does the expectation of a ratio equal the ratio of expectations? , 1999 .

[125]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[126]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[127]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[128]  Arnaud Berny Selection and Reinforcement Learning for Combinatorial Optimization , 2000, PPSN.

[129]  V. Milman,et al.  Concentration Property on Probability Spaces , 2000 .

[130]  L. Watson,et al.  Numerical analysis 2000 Vol. IV: optimization and nonlinear equations , 2000 .

[131]  M. Evans Statistical Distributions , 2000 .

[132]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[133]  Luc Florack,et al.  On the Behavior of Spatial Critical Points under Gaussian Blurring. A Folklore Theorem and Scale-Space Constraints , 2001, Scale-Space.

[134]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[135]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[136]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[137]  James W. Roberts,et al.  A general theory of almost convex functions , 2001, math/0101262.

[138]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[139]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[140]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[141]  Sheldon H. Jacobson,et al.  Finite-Time Performance Analysis of Static Simulated Annealing Algorithms , 2002, Comput. Optim. Appl..

[142]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[143]  Z. Páles On approximately convex functions , 2002 .

[144]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[145]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[146]  Marc S. Paolella Computing moments of ratios of quadratic forms in normal variables , 2003, Comput. Stat. Data Anal..

[147]  Jens Jägersküpper,et al.  Analysis of a Simple Evolutionary Algorithm for Minimization in Euclidean Spaces , 2003, ICALP.

[148]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[149]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[150]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[151]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[152]  Daniel Bienstock,et al.  Solving fractional packing problems in Oast(1/ε) iterations , 2004, STOC '04.

[153]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[154]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[155]  S. Mendelson On weakly bounded empirical processes , 2005, math/0512554.

[156]  A. Galántai On the rate of convergence of the alternating projection method in finite dimensional spaces , 2005 .

[157]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[158]  A. Giannopoulos,et al.  Random Points in Isotropic Unconditional Convex Bodies , 2005 .

[159]  M. Rudelson,et al.  Lp-moments of random vectors via majorizing measures , 2005, math/0507023.

[160]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[161]  Jens Jägersküpper,et al.  Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.

[162]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[163]  Alberto L. Sangiovanni-Vincentelli,et al.  A theoretical framework for simulated annealing , 1991, Algorithmica.

[164]  Alex D. D. Craik,et al.  Prehistory of Faà di Bruno's Formula , 2005, Am. Math. Mon..

[165]  S. Mendelson,et al.  On singular values of matrices with independent rows , 2006 .

[166]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..

[167]  G. Paouris Concentration of mass on convex bodies , 2006 .

[168]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[169]  Jens Jägersküpper,et al.  How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..

[170]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[171]  CHARLES AUDET,et al.  Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..

[172]  STOCHASTIC OPTIMIZATION FOR SYSTEM DESIGN , 2006 .

[173]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[174]  Charles Audet,et al.  Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points , 2006, SIAM J. Optim..

[175]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[176]  Anne Auger,et al.  Log-Linear Convergence and Optimal Bounds for the (1+1)-ES , 2007, Artificial Evolution.

[177]  Luis Rademacher,et al.  Approximating the centroid is hard , 2007, SCG '07.

[178]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[179]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[180]  Arkadi Nemirovski,et al.  EFFICIENT METHODS IN CONVEX PROGRAMMING , 2007 .

[181]  James N. Knight,et al.  Reducing the space-time complexity of the CMA-ES , 2007, GECCO '07.

[182]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[183]  Volker Kaibel,et al.  Two New Bounds for the Random-Edge Simplex-Algorithm , 2007, SIAM J. Discret. Math..

[184]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[185]  Jens Jägersküpper Lower Bounds for Hit-and-Run Direct Search , 2007, SAGA.

[186]  Elad Hazan,et al.  Sparse Approximate Solutions to Semidefinite Programs , 2008, LATIN.

[187]  Jirí Matousek,et al.  On variants of the Johnson–Lindenstrauss lemma , 2008, Random Struct. Algorithms.

[188]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[189]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[190]  Yurii Nesterov,et al.  Rounding of convex sets and efficient gradient methods for linear programming problems , 2004, Optim. Methods Softw..

[191]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[192]  Gabor T. Herman,et al.  Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.

[193]  Charles Audet,et al.  OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions , 2008, SIAM J. Optim..

[194]  Drew D. Creal A Survey of Sequential Monte Carlo Methods for Economics and Finance , 2012 .

[195]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[196]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.

[197]  D. Needell Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.

[198]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[199]  M. Baes Estimate sequence methods: extensions and approximations , 2009 .

[200]  Tom Schaul,et al.  Stochastic search using the natural gradient , 2009, ICML '09.

[201]  Anne Auger,et al.  Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments , 2011, Algorithmica.

[202]  Isao Ono,et al.  Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies , 2010, PPSN.

[203]  D. S. Bhusan,et al.  Linear Programming, the Simplex Algorithm and Simple Polytopes , 2010 .

[204]  Santosh S. Vempala,et al.  Recent Progress and Open Problems in Algorithmic Convex Geometry , 2010, FSTTCS.

[205]  J. Meza,et al.  Steepest descent , 2010 .

[206]  Tom Schaul,et al.  Exponential natural evolution strategies , 2010, GECCO '10.

[207]  Michael I. Jordan,et al.  Random Conic Pursuit for Semidefinite Programming , 2010, NIPS.

[208]  Christian L. Müller,et al.  Gaussian Adaptation Revisited - An Entropic View on Covariance Matrix Adaptation , 2010, EvoApplications.

[209]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[210]  Michele Parrinello,et al.  A self-learning algorithm for biased molecular dynamics , 2010, Proceedings of the National Academy of Sciences.

[211]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[212]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[213]  Christian L. Müller Black-box landscapes , 2010 .

[214]  Uri Zwick,et al.  Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.

[215]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[216]  A. Lewis,et al.  Randomized Hessian estimation and directional search , 2011 .

[217]  Eric Moulines,et al.  Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning , 2011, NIPS.

[218]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[219]  Shang-Hua Teng,et al.  Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.

[220]  Christian L. Müller,et al.  Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis , 2011, EvoApplications.

[221]  Yonina C. Eldar,et al.  Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma , 2010, Numerical Algorithms.

[222]  R. Vershynin Approximating the moments of marginals of high-dimensional distributions , 2009, 0911.0391.

[223]  Black-box Landscapes : Characterization , Optimization , Sampling , and Application to Geometric Configuration Problems , 2011 .

[224]  P. Deuflhard,et al.  Numerische Mathematik 3 , 2011 .

[225]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[226]  Christian L. Müller,et al.  On Spectral Invariance of Randomized Hessian and Covariance Matrix Adaptation Schemes , 2012, PPSN.

[227]  Tom Schaul,et al.  Natural evolution strategies converge on sphere functions , 2012, GECCO '12.

[228]  Robert D. Nowak,et al.  Query Complexity of Derivative-Free Optimization , 2012, NIPS.

[229]  Martin J. Wainwright,et al.  Randomized Smoothing for Stochastic Optimization , 2011, SIAM J. Optim..

[230]  Jonathan M. Garibaldi,et al.  Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[231]  Marcus Gallagher,et al.  Length Scale for Characterising Continuous Optimization Problems , 2012, PPSN.

[232]  Yi Ma,et al.  Gaussian Smoothing and Asymptotic Convexity , 2012 .

[233]  Dirk V. Arnold,et al.  A (1+1)-CMA-ES for constrained optimisation , 2012, GECCO '12.

[234]  D. Needell,et al.  Two-Subspace Projection Method for Coherent Overdetermined Systems , 2012, 1204.0279.

[235]  Youhei Akimoto,et al.  Analysis of a natural gradient algorithm on monotonic convex-quadratic-composite functions , 2012, GECCO '12.

[236]  Martin J. Wainwright,et al.  Optimal rates for zero-order optimization: the power of two function evaluations , 2013, arXiv.org.

[237]  Nikolaos M. Freris,et al.  Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..

[238]  Christian L. Müller,et al.  Optimization of Convex Functions with Random Pursuit , 2011, SIAM J. Optim..

[239]  Ilya Loshchilov,et al.  CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[240]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[241]  Raymond Kan,et al.  On the moments of ratios of quadratic forms in normal random variables , 2013, J. Multivar. Anal..

[242]  Yin Tat Lee,et al.  Efficient Accelerated Coordinate Descent Methods and Faster Algorithms for Solving Linear Systems , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[243]  Michèle Sebag,et al.  Bi-population CMA-ES agorithms with surrogate models and line searches , 2013, GECCO.

[244]  Deanna Needell,et al.  Stochastic gradient descent and the randomized Kaczmarz algorithm , 2013, ArXiv.

[245]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[246]  Hans-Georg Beyer,et al.  Convergence Analysis of Evolutionary Algorithms That Are Based on the Paradigm of Information Geometry , 2014, Evolutionary Computation.

[247]  Sebastian U. Stich,et al.  On Low Complexity Acceleration Techniques for Randomized Optimization , 2014, PPSN.

[248]  Martin J. Wainwright,et al.  Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations , 2013, IEEE Transactions on Information Theory.

[249]  Christian L. Müller,et al.  Variable metric random pursuit , 2012, Math. Program..

[250]  Siam Rfview,et al.  CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .

[251]  Anne Auger,et al.  Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains , 2013, SIAM J. Optim..

[252]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[253]  Monika Eisenhower,et al.  Matrix Tricks For Linear Statistical Models Our Personal Top Twenty , 2016 .