Swarm SCARF Dedicated Ionospheric Field Inversion chain

The geomagnetic daily variation at mid-to-low latitudes, referred to as the geomagnetic Sq field, is generated by electrical currents within the conducting layers of the ionosphere on the dayside of the Earth. It is enhanced in a narrow equatorial band, due to the equatorial electrojet. The upcoming ESA Swarm satellite mission, to be launched end of 2013, will consist of three satellites in low-Earth orbit, providing a dense spatial and temporal coverage of the ionospheric Sq field. A Satellite Constellation Application and Research Facility (SCARF) has been set up by a consortium of research institutions, aiming at producing various level-2 data products during the Swarm mission. The Dedicated Ionospheric Field Inversion (DIFI) chain is a SCARF algorithm calculating global, spherical harmonic models of the Sq field at quiet times. It describes seasonal and solar cycle variations, separates primary and induced magnetic fields based upon advanced 3D-models of the mantle electrical conductivity, and relies on core, lithospheric and magnetospheric field models derived from other SCARF algorithms for removing non-ionospheric fields from the data. The DIFI chain was thoroughly tested on synthetic data during the SCARF preparation phase; it is now ready to be used for deriving models from real Swarm data.

[1]  Nils Olsen,et al.  A comprehensive model of the quiet‐time, near‐Earth magnetic field: phase 3 , 2002 .

[2]  Gernot Plank,et al.  The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products , 2013, Earth, Planets and Space.

[3]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[4]  N. Olsen,et al.  A Comprehensive Model of the Near-Earth Magnetic Field: Phase 3 , 2013 .

[5]  Don Frederick Smart,et al.  The magnetic field of the Earth's lithosphere The Satellite Perspective , 2000 .

[6]  Stefan Maus,et al.  An ellipsoidal harmonic representation of Earth's lithospheric magnetic field to degree and order 720 , 2010 .

[7]  G. Hulot,et al.  Swarm: A constellation to study the Earth’s magnetic field , 2006 .

[8]  Mioara Mandea,et al.  A new proposal for spherical cap harmonic modelling , 2004 .

[9]  N. Olsen,et al.  Enhancing comprehensive inversions using the Swarm constellation , 2006 .

[10]  C. Reigber,et al.  CHAMP mission status , 2002 .

[11]  Erwan Thébault,et al.  The satellite along-track analysis in planetary magnetism , 2012 .

[12]  D. Drob,et al.  A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors , 2009 .

[13]  Erwan Thébault,et al.  Post-processing scheme for modelling the lithospheric magnetic field , 2013 .

[14]  G. V. Haines Spherical cap harmonic analysis , 1985 .

[15]  U. Schmucker A spherical harmonic analysis of solar daily variations in the years 1964-1965: response estimates and source fields for global induction-II. Results: Spherical harmonic analysis of daily variations-II , 1999 .

[16]  B. Hamilton Rapid modelling of the large-scale magnetospheric field from Swarm satellite data , 2013, Earth, Planets and Space.

[17]  F. Lowes Mean‐square values on sphere of spherical harmonic vector fields , 1966 .

[18]  M. W. Dunlop,et al.  Determining the full magnetic field gradient from two spacecraft measurements under special constraints , 2012 .

[19]  Mioara Mandea,et al.  A new proposal for Spherical Cap Harmonic Analysis , 2003 .

[20]  M. Takeda Features of global geomagnetic Sq field from 1980 to 1990 , 2002 .

[21]  S. Maus,et al.  Simulation of the high-degree lithospheric field recovery for the Swarm constellation of satellites , 2006 .

[22]  N. Olsen The solar cycle variability of lunar and solar daily geomagnetic variations , 1993 .

[23]  S. Macmillan,et al.  Observatory data and the Swarm mission , 2013, Earth, Planets and Space.

[24]  Vincent Lesur,et al.  The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 , 2010 .

[25]  Nils Olsen,et al.  Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .

[26]  Richard J. Blakely,et al.  The Magnetic Field of the Earth's Lithosphere: The Satellite Perspective , 1999 .

[27]  Nils Olsen,et al.  3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth’s mantle , 2006 .

[28]  A. Chulliat,et al.  Evaluation of candidate geomagnetic field models for IGRF-11 , 2010 .

[29]  Nils Olsen,et al.  Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation , 2014 .

[30]  Nils Olsen,et al.  On the geographical distribution of induced time‐varying crustal magnetic fields , 2009 .

[31]  Nils Olsen,et al.  A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data , 2002 .

[32]  Nils Olsen,et al.  Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data , 2005, Science.

[33]  A. Thomson,et al.  An improved geomagnetic data selection algorithm for global geomagnetic field modelling , 2007 .

[34]  C. Finlay,et al.  Imaging Earth's crustal magnetic field with satellite data: a regularized spherical triangle tessellation approach , 2009 .

[35]  O. Sirol,et al.  Swarm SCARF Dedicated Lithospheric Field Inversion chain , 2013, Earth, Planets and Space.

[36]  Hermann Lühr,et al.  Resolution of direction of oceanic magnetic lineations by the sixth‐generation lithospheric magnetic field model from CHAMP satellite magnetic measurements , 2008 .

[37]  Mioara Mandea,et al.  The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF , 2010 .

[38]  U. Schmucker A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction—II. Results , 1999 .

[39]  Multiscale Downward Continuation of CHAMP FGM-Data for Crustal Field Modelling , 2003 .

[40]  Reyko Schachtschneider,et al.  An algorithm for deriving core magnetic field models from the Swarm data set , 2013, Earth, Planets and Space.

[41]  Astrid Maute,et al.  Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: Comparison with the observations , 2010 .

[42]  Erwan Thébault,et al.  The Magnetic Field of the Earth’s Lithosphere , 2010 .

[43]  Frederik J. Simons,et al.  GJI Geomagnetism, rock magnetism and palaeomagnetism Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions , 2013 .

[44]  Mioara Mandea,et al.  Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties , 2006 .

[45]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[46]  E. Thébault Global lithospheric magnetic field modelling by successive regional analysis , 2006 .

[47]  Nils Olsen,et al.  Use of the Comprehensive Inversion method for Swarm satellite data analysis , 2013, Earth, Planets and Space.

[48]  Nils Olsen,et al.  The Present Field , 2007 .

[49]  Nils Olsen,et al.  The geomagnetic field gradient tensor , 2012 .

[50]  J. Thayer,et al.  Ionospheric electrodynamics : A tutorial , 2013 .

[51]  P. Alken,et al.  Swarm SCARF equatorial electric field inversion chain , 2013, Earth, Planets and Space.

[52]  Yadvinder Malhi,et al.  Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest , 2002 .

[53]  Vincent Lesur,et al.  Introducing localized constraints in global geomagnetic field modelling , 2006 .

[54]  S. Maus,et al.  A global lithospheric magnetic field model with reduced noise level in the Polar Regions , 2006 .

[55]  Mioara Mandea,et al.  The southern edge of cratonic North America: Evidence from new satellite magnetometer observations , 2002 .

[56]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[57]  Zhigang Wang Understanding models of the geomagnetic field by Fourier analysis. , 1987 .

[58]  Nils Olsen,et al.  Separation of the Magnetic Field into External and Internal Parts , 2010 .

[59]  Kumar Hemant,et al.  Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique , 2005 .

[60]  A. Richmond Ionospheric Electrodynamics Using Magnetic Apex Coordinates. , 1995 .

[61]  Nathanaël Schaeffer,et al.  Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.