On the causal characterization of singularities in spherically symmetric spacetimes

The causal character of the zero-areal-radius (R = 0) singularity in spherically symmetric spacetimes is studied. By using the techniques of the qualitative behaviour of dynamic systems, we are able to present the most comprehensive scheme so far to try to find out their causal characterization, taking into account and analysing, the possible limitations of the approach. We show that, with this approach, the knowledge of the scalar invariant m ≡ R (1 − gμν∂μR∂νR) /2 suffices to characterize the singularity. We apply our results to the study of the outcome of black hole evaporation and show different possibilities. In this way, we find that a persistent naked singularity could develop in the final stages of the evaporation and we show its distinctive features. Likewise, we study the options for the generation of naked singularities in the collapse of an object (such as a star) as a means of violating the cosmic censorship conjecture.

[1]  Roger Penrose,et al.  Asymptotic properties of fields and space-times , 1963 .

[2]  D. Sharp,et al.  RELATIVISTIC EQUATIONS FOR ADIABATIC, SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE , 1964 .

[3]  A. Banerjee Non-homogeneous spherically symmetric collapse of pressureless dust , 1967 .

[4]  R. Penrose STRUCTURE OF SPACE--TIME. , 1968 .

[5]  H. Schöpf Battelle Rencontres ‐ 1967 Lectures in Mathematics and Physics (Ed. by C. M. DeWitt and J. A. Wheeler). XVII + 557 S. m. Fig. New York/Amsterdam 1968. W. A. Benjamin, Inc. , 1970 .

[6]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[7]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[8]  M. Longair Confrontation of Cosmological Theories with Observational Data , 1974 .

[9]  A. Banerjee Spherically symmetric collapse and the naked singularity , 1975 .

[10]  J. Lasota,et al.  Radiating bodies and naked singularities , 1975 .

[11]  J. Walker,et al.  Book Reviews : THEORY OF BIFURCATIONS OF DYNAMIC SYSTEMS ON A PLANE A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier J. Wiley & Sons, New York , New York (1973) , 1976 .

[12]  V. Zagrebnov,et al.  Quantum particle creation (Hawking effect) in nonstationary black holes , 1976 .

[13]  Larry Smarr,et al.  Time functions in numerical relativity: Marginally bound dust collapse , 1979 .

[14]  W. Hiscock Models of evaporating black holes. II. Effects of the outgoing created radiation , 1981 .

[15]  K. Lake,et al.  Collapse of radiating fluid spheres , 1981 .

[16]  W. Hiscock,et al.  Models of evaporating black holes. I , 1981 .

[17]  D. Eardley,et al.  Creation of particles by shell-focusing singularities , 1982 .

[18]  Y. Kuroda Naked singularities in the Vaidya spacetime , 1984 .

[19]  D. Christodoulou Violation of cosmic censorship in the gravitational collapse of a dust cloud , 1984 .

[20]  R. Newman Strengths of naked singularities in Tolman-Bondi spacetimes , 1986 .

[21]  T. Piran,et al.  Naked singularities and other features of self-similar general-relativistic gravitational collapse. , 1990, Physical review. D, Particles and fields.

[22]  J. Carminati,et al.  Algebraic invariants of the Riemann tensor in a four‐dimensional Lorentzian space , 1991 .

[23]  Lake Precursory singularities in spherical gravitational collapse. , 1992, Physical review letters.

[24]  D. Christodoulou Bounded variation solutions of the spherically symmetric einstein‐scalar field equations , 1993 .

[25]  P. Joshi,et al.  On the occurrence of naked singularity in spherically symmetric gravitational collapse , 1994, gr-qc/9405049.

[26]  Hayward Gravitational energy in spherical symmetry. , 1994, Physical review. D, Particles and fields.

[27]  F. Fayos,et al.  General matching of two spherically symmetric spacetimes. , 1996, Physical review. D, Particles and fields.

[28]  A. Ori Perturbative Approach to the Inner Structure of a Rotating Black Hole , 1997 .

[29]  Algebraic invariants of the Riemann tensor for class B warped products , 1998 .

[30]  R. Penrose The question of cosmic censorship , 1999 .

[31]  J. Senovilla Singularity Theorems and Their Consequences , 1998, 1801.04912.

[32]  A CHARACTERIZATION OF THE CENTRAL SHELL-FOCUSING SINGULARITY IN SPHERICAL GRAVITATIONAL COLLAPSE , 1998, gr-qc/9808003.

[33]  D. Christodoulou ON THE GLOBAL INITIAL VALUE PROBLEM AND THE ISSUE OF SINGULARITIES , 1999 .

[34]  R. Herrera Construcción de modelos de estrellas y burbujas de vacío o radiativas en el marco de la relatividad general: un planteamiento global , 2001 .

[35]  Cosmic censorship: A Current perspective , 2002, gr-qc/0206087.

[36]  A. Banerjee,et al.  SPHERICAL COLLAPSE WITH HEAT FLOW AND WITHOUT HORIZON , 2002, gr-qc/0209035.

[37]  Spherically symmetric models for charged radiating stars and voids: Theoretical approach , 2002, gr-qc/0206076.

[38]  Timelike and null focusing singularities in spherical symmetry: a solution to the cosmological horizon problem and a challenge to the cosmic censorship hypothesis , 2002, gr-qc/0203094.

[39]  New mathematical framework for spherical gravitational collapse , 2002, gr-qc/0212082.

[40]  F. Fayos,et al.  Spherically symmetric models for charged stars and voids: I. Charge bound , 2003 .

[41]  Mihalis Dafermos Spherically symmetric spacetimes with a trapped surface , 2004, gr-qc/0403032.

[42]  A. Banerjee,et al.  Spherical Collapse Of A Heat Conducting Fluid In Higher Dimensions Without Horizon , 2005 .

[43]  Even perturbations of the self-similar Vaidya space-time , 2005, gr-qc/0505036.

[44]  J. Senovilla,et al.  Causal structures and causal boundaries , 2005, gr-qc/0501069.

[45]  Jaume Llibre,et al.  Qualitative Theory of Planar Differential Systems , 2006 .

[46]  D. Ring A linear approximation to black hole evaporation , 2006 .

[47]  INSTABILITIES OF NAKED SINGULARITIES AND BLACK HOLE INTERIORS IN GENERAL RELATIVITY , 2008, 0810.0025.

[48]  J. Griffiths,et al.  Exact Space-Times in Einstein's General Relativity , 2009 .

[49]  F. Fayos,et al.  Local behaviour of evaporating stars and black holes around the total evaporation event , 2010 .

[50]  K. Lake Exact Space-Times in Einstein's General Relativity , 2010 .